(本小題12分)
已知點P(2,0)及圓C:.
(1)若直線過點P且與圓心C的距離為1,求直線的方程.
(2)設直線與圓C交于A、B兩點,是否存在實數(shù),使得過點P(2,0)的直線垂直平
分弦AB. 若存在,求出實數(shù)的值;若不存在,說明理由.
(1)
(2)這樣的實數(shù)不存在
解:(1)由題意,圓方程為:
① 當l斜率不存在時,直線l的方程為:,而圓心為,滿足題意 ……(2分)
② 當l斜率存在時,可令l的方程為:
圓心C到直線l的距離
于是l的方程為: …………………………………………(3分)
綜上,l的方程為:  ……………………………………(1分)
(2)由題意垂直平分弦AB,則:圓心在直線
過點,又過點P,的方程為: …………(2分)
而直線AB垂直,則:
則:AB的方程為: ………………………………………………(2分)
又圓心到直線的距離:
直線與圓相離,故:不合題意
則:這樣的實數(shù)不存在 …………………………………………………………(2分)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)已知圓及定點,點是圓上的動點,
上,點上,且滿足,
(1)求的軌跡的方程;
(2)過點作直線,與曲線交于兩點,為坐標原點,設,是否存在這樣的直線,使四邊形的對角線相等?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知過點的動直線與圓相交于、兩點,中點,與直線相交于
(1)求證:當垂直時,必過圓心;
(2)當時,求直線的方程;
(3)探索是否與直線的傾斜角有關,若無關,請求出其值;若有關,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分12分)已知,直線,過點且與直線相切的動圓圓心
軌跡為.
(1)求的方程;
(2)已知各項均為正數(shù)的數(shù)列的前項和為,且滿足:點
在曲線上,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題9分) 已知關于的方程.
(1)當為何值時,方程表示圓;
(2)若圓與直線相交于M,N兩點,且|MN|=,求的值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設直線系,對于下列四個命題:
.存在一個圓與所有直線相交          
.存在一個圓與所有直線不相交
.存在一個圓與所有直線相切
中的直線所能圍成的正三角形面積都相等
其中真命題的代號是   ▲  (寫出所有真命題的代號).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)已知圓C:(x-1)2+(y-2)2=2,過點P(-1,6)作圓C的切線,切點是A,B.(1)求直線PA,PB的方程; (2)求過P點的圓的切線長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

按向量平移后與圓相切,則c的值為(  )
A.8或-2B.6或-4C.4或-6D.2或-8

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知直線交于A、B兩點,且,其中O為原點,則實數(shù)a的值為(   )
A.2    B.4    C. D.

查看答案和解析>>

同步練習冊答案