【題目】已知0<a<1,函數(shù)f(x)=logax.
(1)若f(5a﹣1)≥f(2a),求實(shí)數(shù)a的最大值;
(2)當(dāng)a= 時(shí),設(shè)g(x)=f(x)﹣3x+2m,若函數(shù)g(x)在(1,2)上有零點(diǎn),求實(shí)數(shù)m的取值范圍.

【答案】
(1)解:∵0<a<1,

∴0<5a﹣1≤2a,

<a≤

∴a的最大值是


(2)解:g(x)在(0,+∞)遞減,

∵g(x)在(1,2)上有零點(diǎn),

,

解得: <m<5,

故m的范圍是( ,5)


【解析】1、由題意可得f(5a﹣1)≥f(2a)時(shí)根據(jù)對(duì)數(shù)函數(shù)f(x)=logax,0<a<1的增減性可得 <a≤ 故a的最大值是.
2、根據(jù)零點(diǎn)定理可得g(1)>0,g(2)< 0 解得m的取值范圍。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)是定義在R上的偶函數(shù),且在(0,+∞)上是增函數(shù),設(shè)a=f(﹣ ),b=f(log3 ),c=f( ),則a、b、c的大小關(guān)系是( )
A.a<c<b
B.b<a<c
C.b<c<a
D.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)f(x),若存在區(qū)間A=[m,n],使得{y|y=f(x),x∈A}=A,則稱函數(shù)f(x)為“可等域函數(shù)”,區(qū)間A為函數(shù)f(x)的一個(gè)“可等域區(qū)間”.給出下列四個(gè)函數(shù): ①f(x)=sin x;②f(x)=2x2﹣1;③f(x)=|1﹣2x|
其中存在“可等域區(qū)間”的“可等域函數(shù)”為(
A.①
B.②
C.①②
D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}(n∈N*)是首項(xiàng)為20的等差數(shù)列,其公差d≠0,且a1 , a4 , a5成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 當(dāng)Sn>0時(shí),求n的最大值;
(Ⅲ)設(shè)bn=5﹣ ,求數(shù)列{ }的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2x2+(2﹣m)x﹣m,g(x)=x2﹣x+2m.
(1)若m=1,求不等式f(x)>0的解集;
(2)若m>0,求關(guān)于x的不等式f(x)≤g(x)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=
(1)當(dāng)a=b=1時(shí),求滿足f(x)=3x的x的值;
(2)若函數(shù)f(x)是定義在R上的奇函數(shù),
①判斷f(x)在R的單調(diào)性并用定義法證明;
②當(dāng)x≠0時(shí),函數(shù)g(x)滿足f(x)[g(x)+2]= (3x﹣3x),若對(duì)任意x∈R且x≠0,不等式g(2x)≥mg(x)﹣11恒成立,求實(shí)數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=(1﹣x)ex﹣1.
(Ⅰ)求函數(shù)f(x)的最大值;
(Ⅱ)設(shè) ,x>﹣1且x≠0,證明:g(x)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O為坐標(biāo)原點(diǎn), =(2cosx, ), =(sinx+ cosx,﹣1),若f(x)= +2.
(1)求函數(shù)f(x)的對(duì)稱軸方程;
(2)當(dāng) 時(shí),若函數(shù)g(x)=f(x)+m有零點(diǎn),求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線 經(jīng)過(guò)點(diǎn) ,求:
(1)曲線在點(diǎn) 處的切線的方程;
(2)過(guò)點(diǎn) 的曲線C的切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案