【題目】設(shè)n為正整數(shù),集合A=,,,,,.對于集合A中的任意元素,記

(Ⅰ)當(dāng)n=3時,若,求的值;

(Ⅱ)當(dāng)時,對于中的任意兩個不同的元素,,證明:

(Ⅲ)給定不小于2的正整數(shù)n,設(shè)BA的子集,且滿足:對于B中的任意兩個不同元素,,.寫出一個集合B,使其元素個數(shù)最多,并說明由.

【答案】(Ⅰ)2,2;(Ⅱ)證明見解析;(Ⅲ)見解析.

【解析】

(Ⅰ)根據(jù)定義直接計算即可;

(Ⅱ)設(shè),,有,可得,

所以,易得,

,即可證明結(jié)論.

(Ⅲ)根據(jù)抽屜原理即可得證.

(Ⅰ)因為,

所以,

;

(Ⅱ)當(dāng)時,對于中的任意兩個不同的元素

設(shè),有

,

對于任意的,,,,

當(dāng)時,有,

當(dāng)時,有

,

所以,有,

又因為,

所以,,,當(dāng)且僅當(dāng)時等號成立,

所以,

,

,當(dāng)且僅當(dāng),,)時等號成立;

(Ⅲ)由(Ⅱ)可證,對于任意的,

,則,成立.

所以,考慮設(shè)

,,,

對于任意的,,

,,

所以,

假設(shè)滿足條件的集合B中元素個數(shù)不少于,

則至少存在兩個元素在某個集合,)中,

不妨設(shè)為,則

與假設(shè)矛盾,所以滿足條件的集合B中元素個數(shù)不多于

對于,,,,取,且;

,

則集合滿足條件,且元素個數(shù)為,

是一個滿足條件且元素個數(shù)最多的集合.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓.E為橢圓在第一象限內(nèi)一點,點F在橢圓上且與點E關(guān)于原點對稱,直線與橢圓交于A,B兩點,則點E,F到直線x+y-1=0的距離之和的最大值是________;此時四邊形AEBF的面積是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,、分別是其左、右焦點,過的直線與橢圓交于兩點,且橢圓的離心率為,的周長等于.

1)求橢圓的方程;

2)當(dāng)時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)上購物的普及,傳統(tǒng)的實體店遭受到了強烈的沖擊,某商場實體店近九年來的純利潤如下表所示:

年份

2010

2011

2012

2013

2014

2015

2016

2017

2018

時間代號

1

2

3

4

5

6

7

8

9

實體店純利潤(千萬)

2

2.3

2.5

2.9

3

2.5

2.1

1.7

1.2

根據(jù)這9年的數(shù)據(jù),對作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.254;根據(jù)后5年的數(shù)據(jù),對作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.985;

(1)如果要用線性回歸方程預(yù)測該商場2019年實體店純利潤,現(xiàn)有兩個方案:

方案一:選取這9年的數(shù)據(jù),進行預(yù)測;

方案二:選取后5年的數(shù)據(jù)進行預(yù)測.

從生活實際背景以及相關(guān)性檢驗的角度分析,你覺得哪個方案更合適.

附:相關(guān)性檢驗的臨界值表:

小概率

0.05

0.01

3

0.878

0.959

7

0.666

0.798

(2)某機構(gòu)調(diào)研了大量已經(jīng)開店的店主,據(jù)統(tǒng)計,只開網(wǎng)店的占調(diào)查總?cè)藬?shù)的,既開網(wǎng)店又開實體店的占調(diào)查總?cè)藬?shù)的,現(xiàn)以此調(diào)查統(tǒng)計結(jié)果作為概率,若從上述統(tǒng)計的店主中隨機抽查了5位,求只開實體店的人數(shù)的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若上恒成立,求實數(shù)的取值范圍;

3)在(2)的條件下(提示:可以用第(2)問的結(jié)論),對任意的,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在從100到999的所有三位數(shù)中,百位、十位、個位數(shù)字依次構(gòu)成等差數(shù)列的有__________個;構(gòu)成等比數(shù)列的有__________個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,為正三角形,為棱的中點,,平面平面

1)求證:平面平面;

2)若是棱上一點,與平面所成角的正弦值為,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家正積極推行垃圾分類工作,教育部辦公廳等六部門也發(fā)布了《關(guān)于在學(xué)校推進生活垃圾分類管理工作的通知》.《通知》指出,到2020年底,各學(xué)校生活垃圾分類知識普及率要達到100%某市教育主管部門據(jù)此做了哪些活動最能促進學(xué)生進行垃圾分類的問卷調(diào)查(每個受訪者只能在問卷的4個活動中選擇一個)如圖是調(diào)查結(jié)果的統(tǒng)計圖,以下結(jié)論正確的是(  。

A.回答該問卷的受訪者中,選擇的(2)和(3)人數(shù)總和比選擇(4)的人數(shù)多

B.回該問卷的受訪者中,選擇校園外宣傳的人數(shù)不是最少的

C.回答該問卷的受訪者中,選擇(4)的人數(shù)比選擇(2)的人數(shù)可能多30

D.回答該問卷的總?cè)藬?shù)不可能是1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)若,求在區(qū)間[-1,2]上的取值范圍;

(Ⅱ)若對任意, 恒成立,記,求的最大值.

查看答案和解析>>

同步練習(xí)冊答案