【題目】如圖,在三棱錐中,為正三角形,為棱的中點,,,平面平面
(1)求證:平面平面;
(2)若是棱上一點,與平面所成角的正弦值為,求二面角的正弦值.
【答案】(1)證明見解析(2)
【解析】
(1)先根據(jù)平面平面,得出,結(jié)合條件得出平面,從而可得.
(2)建立空間直角坐標系,結(jié)合與平面所成角的正弦值為得出的坐標,然后利用法向量可求.
(1)因為為正三角形,為棱的中點,所以,
又平面平面,且平面平面,
所以平面,
所以,又,且,
所以平面.
又平面,
所以平面平面.
(2)作中點,連,由(1)及可知平面,
以為坐標原點,分別為軸,過且平行于的方向為軸,如圖,建立空間直角坐標系.
設(shè),
則,
,
設(shè),則,,
設(shè)平面的法向量為,
因為與平面所成角的正弦值為,
所以,即,解得,
即為的中點,則
設(shè)平面的法向量為,則
,即,
取.
設(shè)平面的法向量為,則,
則二面角的余弦值為,
故.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列中前兩項給定,若對于每個正整數(shù),均存在正整數(shù)()使得,則稱數(shù)列為“數(shù)列”.
(1)若數(shù)列為的等比數(shù)列,當時,試問:與是否相等,并說明數(shù)列是否為“數(shù)列”;
(2)討論首項為、公差為的等差數(shù)列是否為“數(shù)列”,并說明理由;
(3)已知數(shù)列為“數(shù)列”,且 ,記,,其中正整數(shù), 對于每個正整數(shù),當正整數(shù)分別取1、2、、時的最大值記為、最小值記為. 設(shè),當正整數(shù)滿足時,比較與的大小,并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)n為正整數(shù),集合A=,,,,,.對于集合A中的任意元素和,記.
(Ⅰ)當n=3時,若,,求和的值;
(Ⅱ)當時,對于中的任意兩個不同的元素,,證明:.
(Ⅲ)給定不小于2的正整數(shù)n,設(shè)B是A的子集,且滿足:對于B中的任意兩個不同元素,,.寫出一個集合B,使其元素個數(shù)最多,并說明由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1,點M、E分別是PA、PD的中點
(1)求證:CE//平面BMD
(2)點Q為線段BP中點,求直線PA與平面CEQ所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高二某班共有45人,學號依次為1、2、3、…、45,現(xiàn)按學號用系統(tǒng)抽樣的辦法抽取一個容量為5的樣本,已知學號為6、24、33的同學在樣本中,那么樣本中還有兩個同學的學號應為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一種新的驗血技術(shù)可以提高血液檢測效率.現(xiàn)某專業(yè)檢測機構(gòu)提取了份血液樣本,其中只有1份呈陽性,并設(shè)計了如下混合檢測方案:先隨機對其中份血液樣本分別取樣,然后再混合在一起進行檢測,若檢測結(jié)果為陰性,則對另外3份血液逐一檢測,直到確定呈陽性的血液為止;若檢測結(jié)果呈陽性,測對這份血液再逐一檢測,直到確定呈陽性的血液為止.
(1)若,求恰好經(jīng)過3次檢測而確定呈陽性的血液的事件概率;
(2)若,宜采用以上方案檢測而確定呈陽性的血液所需次數(shù)為,
①求的概率分布;
②求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某次測驗,將20名學生平均分為兩組,測驗結(jié)果兩組學生成績的平均分和標準差分別為90,6;80,4.則這20名學生成績的方差為_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,將長方形OAA1O1(及其內(nèi)部)繞OO1旋轉(zhuǎn)一周形成圓柱,其中,弧的長為,AB為⊙O的直徑.
(1)在弧上是否存在點(,在平面的同側(cè)),使,若存在,確定其位置,若不存在,說明理由.
(2)求二面角的余弦值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com