設(shè)函數(shù)f(x)=
2x      x<0
g(x)    x>0.
若f(x)是奇函數(shù),則g(2)的值是( 。
A、-
1
4
B、-4
C、
1
4
D、4
分析:由f(x)是奇函數(shù)得f(x)=-f(-x),再由x<0時,f(x)=2x,求出g(x)的解析式,再求出g(2)的值.
解答:解:∵f(x)為奇函數(shù),x<0時,f(x)=2x,
∴x>0時,f(x)=-f(-x)=-2-x=-
1
2x

g(x)=-
1
2x
,g(2)=-
1
4

故選A.
點評:本題考查了利用奇函數(shù)的關(guān)系式求函數(shù)的解析式,再求出函數(shù)的值,注意利用負號對自變量進行范圍的轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x+1x2+2

(Ⅰ)求f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)若對一切x∈R,-3≤af(x)+b≤3,求a-b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x
|x|+1
(x∈R)
,區(qū)間M=[a,b](其中a<b),集合N={y|y=f(x),x∈M},則使M=N成立的實數(shù)對(a,b)有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶三模)設(shè)函數(shù)f(x)=
2x+3
3x-1
,則f-1(1)
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2
x+2
,點A0表示原點,點An=[n,f(n)](n∈N*).若向量
an
=
A0A1
+
A1A2
+…+
An-1An
,θn
an
i
的夾角[其中
i
=(1,0)]
,設(shè)Sn=tanθ1+tanθ2+…+tanθn,則
lim
n→∞
Sn
=
3
4
2
3
4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
2x-3,x≥1
1-3x
x
,0<x<1
,若f(x0)=1,則x0等于( 。

查看答案和解析>>

同步練習(xí)冊答案