在拋物線y=x2+ax-5(a≠0)上取橫坐標x1=-4,x2=2的兩點,經(jīng)過兩點引一條割線,有平行于該割線的一條直線同時與該拋物線和圓5x2+5y2=36相切,則拋物線的頂點坐標是(  )
A、(2,-9)
B、(0,-5)
C、(-2,-9)
D、(1,6)
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:求出兩個點的坐標,利用兩點連線的斜率公式求出割線的斜率;利用導(dǎo)數(shù)在切點處的值為切線的斜率求出切點坐標;利用直線方程的點斜式求出直線方程;利用直線與圓相切的條件求出a,求出拋物線的頂點坐標.
解答: 解:兩點坐標為(-4,11-4a),(2,2a-1);
兩點連線的斜率k=
11-4a-2a+1
-4-2
=a-2
,
對于y=x2+ax-5,y′=2x+a,
∴2x+a=a-2解得x=-1;
在拋物線上的切點為(-1,-a-4),切線方程為(a-2)x-y-6=0,
∵直線與圓相切,圓心(0,0)到直線的距離與圓的半徑相等,
6
(a-2)2+1
=
36
5

解得a=4或0(0舍去)
∴拋物線方程為y=x2+4x-5頂點坐標為(-2,-9).
故選:C.
點評:本題考查兩點連線的斜率公式、考查導(dǎo)數(shù)在切點處的值為切線的斜率、考查直線與圓相切的充要條件是圓心到直線的距離等于半徑.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=
1
2x-x 2
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}的前n項和為Sn,若Sn=2an-1,則數(shù)列{Sn}的前6項和是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A、π+4
B、π+3
C、
2
+4
D、
2
+2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列說法錯誤的是( 。
A、在統(tǒng)計學中,獨立性檢驗是檢驗兩個分類變量是否有關(guān)系的一種統(tǒng)計方法.
B、線性回歸方程對應(yīng)的直線
y
=
b
x+
a
至少經(jīng)過其樣本數(shù)據(jù)(x1,y1),(x2,y2),(x3,y3)…(xn,yn)中的一個點.
C、在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高.
D、在回歸分析中,相關(guān)指數(shù)R2為0.98的模型比相關(guān)指數(shù)R2為0.80的模型擬合的效果好.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=g(x)的圖象由f(x)=sin2x的圖象向右平移φ(0<φ<π)個單位得到,這兩個函數(shù)的部分圖象如圖所示,則φ=( 。
A、
π
6
B、
π
4
C、
π
3
D、
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個空間幾何體的三視圖如圖所示,則這個幾何體的表面積為( 。
A、
1
6
B、3+
2
C、3
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=kx-3在其定義域上為增函數(shù),則此函數(shù)的圖象所經(jīng)過的象限為(  )
A、一、二、三象限
B、一、二、四象限
C、一、三、四象限
D、二、三、四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-2x-3>0},則集合N∩∁RA中元素的個數(shù)為( 。
A、無數(shù)個B、3C、4D、5

查看答案和解析>>

同步練習冊答案