函數(shù)y=ln(1+x)-x的單調(diào)遞增區(qū)間為   
【答案】分析:根據(jù)題意先求出函數(shù)的定義域,然后求出函數(shù)的導(dǎo)函數(shù)y′,令y′>0即可求出函數(shù)的單調(diào)遞增區(qū)間;
解答:解:函數(shù)y=ln(1+x)-x的定義域?yàn)椋?1,+∞)
函數(shù)的導(dǎo)函數(shù)為y′=-1,
要求函數(shù)的單調(diào)遞增區(qū)間即是求出y′>0即可,
y′=-1>0,解得x<0
可知函數(shù)y=ln(1+x)-x的單調(diào)遞增區(qū)間為(-1,0);
故答案為(-1,0).
點(diǎn)評(píng):本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性等基礎(chǔ)題知識(shí),考查運(yùn)算求解能力、推理論證能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=ln(1+x)(1-x)的單調(diào)增區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=ln(2x+1)(x>-
1
2
)
的反函數(shù)是( 。
A、y=
1
2
ex-1(x∈R)
B、y=e2x-1(x∈R)
C、y=
1
2
(ex-1)(x∈R)
D、y=e
x
2
-1(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于下列結(jié)論:
①函數(shù)y=ax+2(x∈R)的圖象可以由函數(shù)y=ax(a>0且a≠1)的圖象平移得到;
②函數(shù)y=2x與函數(shù)y=log2x的圖象關(guān)于y軸對(duì)稱(chēng);
③方程log5(2x+1)=log5(x2-2)的解集為{-1,3};
④函數(shù)y=ln(1+x)-ln(1-x)為奇函數(shù).
其中正確的結(jié)論是
①④
①④
(把你認(rèn)為正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=ln(1+x)-x的單調(diào)遞增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=ln(1-x)的定義域?yàn)锳,函數(shù)y=x2的值域?yàn)锽,則A∩B=( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案