精英家教網 > 高中數學 > 題目詳情

一空間幾何體的三視圖如圖所示,則該幾何體的體積為

A.B.
C.D.

C

解析考點:由三視圖求面積、體積.
分析:由三視圖及題設條件知,此幾何體為一個上部是四棱錐,下部是圓柱其高已知,底面是半徑為1的圓,故分別求出兩個幾何體的體積,再相加既得組合體的體積.
解:此幾何體為一個上部是正四棱錐,下部是圓柱
由于圓柱的底面半徑為1,其高為2,故其體積為π×12×2=2π
棱錐底面是對角線為2的正方形,故其邊長為,其底面積為2,又母線長為2,
故其高為=
由此知其體積為×2×=
故組合體的體積為2π+
故選:C

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

一空間幾何體的三視圖如圖所示,則該幾何體的體積為
 

精英家教網

查看答案和解析>>

科目:高中數學 來源: 題型:

一空間幾何體的三視圖如圖所示,則該幾何體的體積為
 

精英家教網

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•成都一模)一空間幾何體的三視圖如圖所示,圖中各線段旁的數字表示 該線段的長度,則該幾何體的體積為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•德州一模)一空間幾何體的三視圖如圖所示,該幾何體的體積為16π+
8
5
3
,則圖中x的值為
3
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•廈門模擬)已知一空間幾何體的三視圖如圖所示,則該幾何體中相互垂直的棱共有( 。

查看答案和解析>>

同步練習冊答案