A. | (-2$\sqrt{2}$-$\frac{1}{2}$,2$\sqrt{2}$-$\frac{1}{2}$) | B. | [-2$\sqrt{2}$-$\frac{1}{2}$,2$\sqrt{2}$-$\frac{1}{2}$] | C. | (-$\sqrt{2}$-$\frac{1}{2}$,$\sqrt{2}$-$\frac{1}{2}$) | D. | [-$\sqrt{2}$-$\frac{1}{2}$,$\sqrt{2}$-$\frac{1}{2}$] |
分析 由條件求出圓心,求出半徑,由數(shù)形結合,只需圓心到直線的距離圓心到直線的距離小于半徑和$\frac{1}{2}$的差即可.
解答 解:圓C:(x-$\frac{5}{2}$)2+(y-2)2=$\frac{25}{4}$的圓心為C($\frac{5}{2}$,2),半徑等于$\frac{5}{2}$,圓心到直線的距離d=$\frac{|\frac{1}{2}+a|}{\sqrt{2}}$,
要使圓C:(x-$\frac{5}{2}$)2+(y-2)2=$\frac{25}{4}$上有4個點到直線x-y+a=0的距離為$\frac{1}{2}$,應有 $\frac{|\frac{1}{2}+a|}{\sqrt{2}}$<$\frac{5}{2}$-$\frac{1}{2}$,
即-2$\sqrt{2}$-$\frac{1}{2}$<a<2$\sqrt{2}$-$\frac{1}{2}$,
故選:A.
點評 本題考查圓與直線的位置關系,判斷圓心到直線的距離d小于半徑與$\frac{1}{2}$的差,是解決問題的關鍵,屬中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com