18.設(shè)函數(shù)f(x)=x3+ax2,若曲線y=f(x)在點(diǎn)P(x0,f(x0))處的切線方程為x+y=0,則點(diǎn)P的坐標(biāo)為( 。
A.(0,0)B.(1,-1)C.(-1,1)D.(1,-1)或(-1,1)

分析 由曲線y=f(x)在點(diǎn)P(x0,f(x0))處的切線方程為x+y=0,導(dǎo)函數(shù)等于-1求得點(diǎn)(x0,f(x0))的橫坐標(biāo),進(jìn)一步求得f(x0)的值,可得結(jié)論.

解答 解:∵f(x)=x3+ax2,
∴f′(x)=3x2+2ax,
∵函數(shù)在點(diǎn)(x0,f(x0))處的切線方程為x+y=0,
∴3x02+2ax0=-1,
∵x0+x03+ax02=0,解得x0=±1.
當(dāng)x0=1時(shí),f(x0)=-1,
當(dāng)x0=-1時(shí),f(x0)=1.
故選:D.

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)處的切線方程,函數(shù)在某點(diǎn)處的導(dǎo)數(shù)值就是對(duì)應(yīng)曲線上該點(diǎn)處的切線的斜率,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖是總體密度曲線,下列說法正確的是( 。
A.組距越大,頻率分布折線圖越接近于它
B.樣本容量越小,頻率分布折線圖越接近于它
C.陰影部分的面積代表總體在(a,b)內(nèi)取值的百分比
D.陰影部分的平均高度代表總體在(a,b)內(nèi)取值的百分比

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知{an}是等差數(shù)列,其前n項(xiàng)和為Sn,a1+a3+a5=15,a2+a4+a6=0,則Sn的最大值為30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知復(fù)數(shù)z的實(shí)部為-1,虛部為2,則$\frac{5i}{\overline z}$對(duì)應(yīng)的點(diǎn)位于( 。
A.第四象限B.第一象限C.第三象限D.第二象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知集合{x|x2+ax=0}={0,1},則實(shí)數(shù)a的值為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測(cè)出其中一項(xiàng)質(zhì)量指標(biāo)存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲,乙兩條流水線的生產(chǎn)情況,隨機(jī)地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測(cè)出它們的這一項(xiàng)質(zhì)量指標(biāo)值.若該項(xiàng)質(zhì)量指標(biāo)值落在(195,210]內(nèi),則為合格品,否則為不合格品.表1是甲流水線樣本的頻數(shù)分布表,如圖是乙流水線樣本的頻率分布直方圖.
甲流水線樣本的頻數(shù)分布表
質(zhì)量指標(biāo)值頻數(shù)
(190,195]9
(195,200]10
(200,205]17
(205,210]8
(210,215]6
(Ⅰ)根據(jù)圖1,估計(jì)乙流水線生產(chǎn)產(chǎn)品該質(zhì)量指標(biāo)值的中位數(shù);
(Ⅱ)若將頻率視為概率,某個(gè)月內(nèi)甲,乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲,乙兩
條流水線分別生產(chǎn)出不合格品約多少件?
(Ⅲ)根據(jù)已知條件完成下面2×2列聯(lián)表,并回答是否有85%的把握認(rèn)為“該企業(yè)生產(chǎn)的這
種產(chǎn)品的質(zhì)量指標(biāo)值與甲,乙兩條流水線的選擇有關(guān)”?
甲生產(chǎn)線乙生產(chǎn)線合計(jì)
合格品
不合格品
合計(jì)
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$(其中n=a+b+c+d為樣本容量)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)y=|x-2|-2的定義域?yàn)榧螹={x∈R|-2≤x≤2},值域?yàn)榧螻,則(  )
A.M=NB.M?NC.N?MD.M∩N=∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知-$\frac{π}{2}$<x<0,sinx+cosx=$\frac{1}{2}$.求$\frac{si{n}^{2}\frac{x}{2}-2sinxcosx+co{s}^{2}\frac{x}{2}}{tanx+cotx}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若$\frac{1}{a}<\frac{1}<0$,則下列不等式中,正確的不等式有( 。
A.a+b>abB.|a|>|b|C.a<bD.$\frac{a}+\frac{a}>2$

查看答案和解析>>

同步練習(xí)冊(cè)答案