如圖,設(shè)橢圓的左右焦點(diǎn)為,上頂點(diǎn)為,點(diǎn)關(guān)于對(duì)稱,且
(1)求橢圓的離心率;
(2)已知是過(guò)三點(diǎn)的圓上的點(diǎn),若的面積為,求點(diǎn)到直線距離的最大值。
(1);(2)4.

試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程、勾股定理、點(diǎn)到直線的距離、直線與圓的位置關(guān)系等基礎(chǔ)知識(shí),考查學(xué)生的分析問(wèn)題解決問(wèn)題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問(wèn),先通過(guò)對(duì)稱性得到B點(diǎn)坐標(biāo),利用兩點(diǎn)間距離公式得的3個(gè)邊長(zhǎng),利用勾股定理列出關(guān)系式,化簡(jiǎn)出離心率e的值;第二問(wèn),利用第一問(wèn)知是邊長(zhǎng)為a的正三角形,利用三角形面積,得到a的值,從而得到b和c的值,由于,所以圓是以為圓心,為半徑,則可直接寫出圓的方程,因?yàn)辄c(diǎn)p到直線的最大距離為圓心到直線的距離加上半徑,所以利用點(diǎn)到直線的距離公式計(jì)算即可.
試題解析:(1)
及勾股定理可知,即
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824054824312516.png" style="vertical-align:middle;" />,所以,解得
(2)由(1)可知是邊長(zhǎng)為的正三角形,所以
解得
可知直角三角形的外接圓以為圓心,半徑
即點(diǎn)在圓上,
因?yàn)閳A心到直線的距離為
故該圓與直線相切,所以點(diǎn)到直線的最大距離為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為.
(1)若原點(diǎn)到直線的距離為,求橢圓的方程;
(2)設(shè)過(guò)橢圓的右焦點(diǎn)且傾斜角為的直線和橢圓交于A,B兩點(diǎn).
當(dāng),求b的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的左、右頂點(diǎn)分別是、,左、右焦點(diǎn)分別是、.若,成等比數(shù)列,求此橢圓的離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,為橢圓在軸正半軸上的焦點(diǎn),、兩點(diǎn)在橢圓上,且,定點(diǎn).
(1)求證:當(dāng)時(shí)
(2)若當(dāng)時(shí)有,求橢圓的方程;
(3)在(2)的橢圓中,當(dāng)兩點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),試判斷 是否有最大值,若存在,求出最大值,并求出這時(shí)、兩點(diǎn)所在直線方程,若不存在,給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在平面斜坐標(biāo)系xoy中∠x(chóng)oy=45°,點(diǎn)P的斜坐標(biāo)定義為:“若
OP
=x0
e1
+y0
e2
(其中,
e1
,
e2
分別為與斜坐標(biāo)系的x軸,y軸同方向的單位向量),則點(diǎn)P的坐標(biāo)為(x0,y0)”.若F1(-1,0),F(xiàn)2(1,0)且動(dòng)點(diǎn)M(x,y)滿足|
MF1
|=|
MF2
|,則點(diǎn)M在斜坐標(biāo)系中的軌跡方程為( 。
A.x=0B.y=0C.
2
x+y=0
D.
2
x-y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

橢圓的弦的中點(diǎn)為,則弦所在直線的方程是           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知點(diǎn)M(,0),橢圓+y2=1與直線y=k(x+)交于點(diǎn)A、B,則△ABM的周長(zhǎng)為(  )
A.4      B.8     C.12     D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓,則以點(diǎn)為中點(diǎn)的弦所在直線方程為(      ).
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓E:=1(a>b>0)的上焦點(diǎn)是F1,過(guò)點(diǎn)P(3,4)和F1作直線PF1交橢圓于A,B兩點(diǎn),已知A(,).
(1)求橢圓E的方程;
(2)設(shè)點(diǎn)C是橢圓E上到直線PF1距離最遠(yuǎn)的點(diǎn),求C點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案