分析 (1)結(jié)合圖象分別求出甲、乙公司的平均數(shù)和方差,根據(jù)其大小判斷結(jié)論即可;
(2)求出平均數(shù),計(jì)算回歸方程的系數(shù),求出回歸方程即可.
解答 解:(1)由題圖可知,甲公司每小時(shí)點(diǎn)擊次數(shù)為9,5,7,8,7,6,8,6,7,7,
乙公司每小時(shí)點(diǎn)擊次數(shù)為2,4,6,8,7,7,8,9,9,10.
甲公司每小時(shí)點(diǎn)擊次數(shù)的平均數(shù)為:$\overline{{X}_{甲}}$=$\frac{1}{10}$(9+5+7+8+7+6+8+6+7+7)=7,
乙公司每小時(shí)點(diǎn)擊次數(shù)的平均數(shù)為:$\overline{{X}_{乙}}$=$\frac{1}{10}$(2+4+6+8+7+7+8+9+9+10)=7,
甲公司每小時(shí)點(diǎn)擊次數(shù)的方差為:${{S}_{甲}}^{2}$=$\frac{1}{10}$(4+4+2+2+0)=1.2;
乙公司每小時(shí)點(diǎn)擊次數(shù)的方差為:
${{S}_{乙}}^{2}$=$\frac{1}{10}$(25+9+1+2+8+9+0)=5.4,
由計(jì)算已知,甲、乙公司每小時(shí)點(diǎn)擊次數(shù)的均值相同,但是甲的方差較小,
所以,甲公司每小時(shí)點(diǎn)擊次數(shù)更加穩(wěn)定.
(2)根據(jù)折線圖可得數(shù)據(jù)如下:
點(diǎn)擊次數(shù)y | 2 | 4 | 6 | 8 | 7 |
點(diǎn)擊價(jià)格x | 1 | 2 | 3 | 4 | 5 |
點(diǎn)評(píng) 本題考查了均值和方程的求法,考查回歸方程問(wèn)題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{9}{19}$ | B. | $\frac{18}{19}$ | C. | $\frac{10}{21}$ | D. | $\frac{20}{21}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若a>b,c>d,則ac>bc | B. | 若ac>bc,則a>b | ||
C. | 若$\frac{a}{{c}^{2}}$<$\frac{{c}^{2}}$,則a<b | D. | 若a>b,c>d,則a-c>b-d |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{8}$ | C. | $\frac{3}{8}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{12}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com