分析 利用誘導(dǎo)公式求得sinα的值,可得cosα的值,再利用二倍角的余弦公式求得要求式子的值.
解答 解:∵cos($\frac{π}{2}$+α)=-sinα=-$\frac{2\sqrt{2}}{3}$,α∈($\frac{π}{2}$,$\frac{3π}{2}$),
∴sinα=$\frac{2\sqrt{2}}{3}$,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{1}{3}$,
∴sinα•cosα+cos2α=sinα•cosα+2cos2α-1=$\frac{2\sqrt{2}}{3}$•(-$\frac{1}{3}$)+2•$\frac{1}{9}$-1=$\frac{-2\sqrt{2}-7}{9}$,
故答案為:$\frac{-2\sqrt{2}-7}{9}$.
點評 本題主要考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系、二倍角的余弦公式的應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | -1 | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,0),5 | B. | (0,1),5 | C. | (-1,0),5 | D. | (2,1),5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($-\frac{1}{2}-\frac{1}{2{e}^{2}}$,0) | B. | (0,$\frac{1}{{e}^{2}}$] | C. | (0,$\frac{1}{2}+\frac{1}{2{e}^{2}}$] | D. | ($\frac{1}{2{e}^{2}}-\frac{1}{2}$,$\frac{1}{{e}^{2}}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com