雙曲線(xiàn)的中心為原點(diǎn),焦點(diǎn)在軸上,兩條漸近線(xiàn)分別為,經(jīng)過(guò)右焦點(diǎn)垂直于的直線(xiàn)分別交兩點(diǎn).已知成等差數(shù)列,且同向.

   (Ⅰ)求雙曲線(xiàn)的離心率;

   (Ⅱ)設(shè)被雙曲線(xiàn)所截得的線(xiàn)段的長(zhǎng)為4,求雙曲線(xiàn)的方程.

 

 

 

 

 

 

 

 

 

 

 

 

【答案】

 解:(Ⅰ)設(shè),,

由勾股定理可得:             2分

得:,,

由倍角公式,解得,則離心率.            6分

(Ⅱ)過(guò)直線(xiàn)方程為,與雙曲線(xiàn)方程聯(lián)立

代入,化簡(jiǎn)有            8分

將數(shù)值代入,有,解得             10分

故所求的雙曲線(xiàn)方程為.             12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線(xiàn)的中心為原點(diǎn)O,焦點(diǎn)在x軸上,兩條漸近線(xiàn)分別為l1,l2,經(jīng)過(guò)右焦點(diǎn)F垂直于l1的直線(xiàn)分別交l1,l2于A,B兩點(diǎn).已知|
OA
|、|
AB
|、|
OB
|成等差數(shù)列,且
BF
FA
同向.
(Ⅰ)求雙曲線(xiàn)的離心率;
(Ⅱ)設(shè)AB被雙曲線(xiàn)所截得的線(xiàn)段的長(zhǎng)為4,求雙曲線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線(xiàn)的中心為原點(diǎn)O,焦點(diǎn)在x軸上,兩條漸近線(xiàn)分別為l1,l2,經(jīng)過(guò)右焦點(diǎn)F垂直l1的直線(xiàn)分別交l1,l2于A,B兩點(diǎn),己知|
OA
|,|
AB
|,|
OB
|
成等差數(shù)列,且
BF
FA
同向,則雙曲線(xiàn)的離心率
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•梅州一模)已知有公共焦點(diǎn)的橢圓與雙曲線(xiàn)的中心為原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1,F(xiàn)2且它們?cè)诘谝幌笙薜慕稽c(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形,雙曲線(xiàn)的離心率的取值范圍為(1,2),則該橢圓的離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)的中心為原點(diǎn),F(xiàn)(3,0)是雙曲線(xiàn)的-個(gè)焦點(diǎn),
5
x-2y=0
是雙曲線(xiàn)的一條漸近線(xiàn),則雙曲線(xiàn)的標(biāo)準(zhǔn)方程為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)的中心為原點(diǎn),的焦點(diǎn),過(guò)F的直線(xiàn)相交于A,B兩點(diǎn),且AB的中點(diǎn)為,則的方程式為

(A)   (B)           (C)          (D)

查看答案和解析>>

同步練習(xí)冊(cè)答案