17.設(shè)初中畢業(yè)生中男生的身高服從正態(tài)分布N(167,25)(單位:cm),今年某市共有初中畢業(yè)生約12000人(男女生比例約為1:1),如果他們將全部升入高一級(jí)學(xué)校學(xué)習(xí),那么校服制作廠(chǎng)家要為他們制作約4096套適合身高在162~172cm范圍內(nèi)男生穿的新校服.(附:若隨機(jī)變量X一N(μ,σ2),則P(μ-σ≤X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974)

分析 利用初中畢業(yè)生中男生的身高服從正態(tài)分布N(167,25),可得P(162≤X≤172)=0.6826,即可得出結(jié)論.

解答 解:∵初中畢業(yè)生中男生的身高服從正態(tài)分布N(167,25),
∴P(162≤X≤172)=0.6826,
∵初中畢業(yè)生約12000人(男女生比例約為1:1),
∴身高在162~172cm范圍內(nèi)男生為6000×0.6826=4096.
故答案為:4096.

點(diǎn)評(píng) 本題考查正態(tài)分布,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.當(dāng)二項(xiàng)式(x+1)44展開(kāi)式中的第21項(xiàng)與第22項(xiàng)相等時(shí),非零實(shí)數(shù)x的值是( 。
A.1B.2C.$\frac{7}{8}$D.$\frac{8}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.用數(shù)學(xué)歸納法證明:7n+3n-1(n∈N*)能被9整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知sinx=2cosx,則$\frac{5sinx-cosx}{2sinx+cosx}$=( 。
A.$\frac{6}{5}$B.$\frac{9}{5}$C.$\frac{8}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)一元二次方程mx2+(2m-1)x+(m+1)=0的兩根為tanα,tanβ,求tan(α+β)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2,<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{6}$,求:
(1)$\overrightarrow{a}$•$\overrightarrow$;
(2)(2$\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知cosα=-$\frac{3}{5}$,α∈($\frac{π}{2}$,π),求cos(α+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知全集U={x|x2-2x-3≤0},集合M={y|x2+y2=1},則∁UM=( 。
A.(-∞,-1)∪(1,+∞)B.(1,3]C.[-1,1]D.[-1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.若{an}為等差數(shù)列,Sn是其前n項(xiàng)的和,且${S_{11}}=\frac{22}{3}π,\{{b_n}\}$為等比數(shù)列,且bn>0,${b_5}•{b_7}=\frac{π^2}{4}$,則tan(a6+b6)的值為( 。
A.$\sqrt{3}$B.$±\sqrt{3}$C.$\frac{{\sqrt{3}}}{3}$D.±$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案