2.已知|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2,<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{6}$,求:
(1)$\overrightarrow{a}$•$\overrightarrow$;
(2)(2$\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$的值.

分析 根據(jù)向量的數(shù)量積的運(yùn)算法則計算即可.

解答 解:(1)∵|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2,<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{6}$,
∴$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|cos<$\overrightarrow{a}$,$\overrightarrow$>=3×2×$\frac{\sqrt{3}}{2}$=3$\sqrt{3}$;
(2)(2$\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow$=2$\overrightarrow{a}$•$\overrightarrow$+${\overrightarrow}^{2}$=2×3$\sqrt{3}$+22=6$\sqrt{3}$+4.

點評 本題考查了向量的數(shù)量積的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在△ABC中,角A,B,C對邊分別是a,b,c,已知B=60°,c=2,若b=2$\sqrt{3}$,則△ABC的面積是2$\sqrt{3}$;若滿足條件的三角形恰有兩個,則b的取值范圍是($\sqrt{3}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.(x+$\frac{3}{x}$)(x-$\frac{2}{x}$)5展開式中的常數(shù)項為40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.求和:S=sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sinπ+…+sin$\frac{2015π}{3}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)初中畢業(yè)生中男生的身高服從正態(tài)分布N(167,25)(單位:cm),今年某市共有初中畢業(yè)生約12000人(男女生比例約為1:1),如果他們將全部升入高一級學(xué)校學(xué)習(xí),那么校服制作廠家要為他們制作約4096套適合身高在162~172cm范圍內(nèi)男生穿的新校服.(附:若隨機(jī)變量X一N(μ,σ2),則P(μ-σ≤X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=log${\;}_{\frac{1}{3}}$(x2-2x+4)的值域是(-∞,-1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)f(x)為奇函數(shù),x∈(0,+∞)時,f(x)=x-1,則使f(x)>0成立的實數(shù)x的取值范圍是( 。
A.x>1B.x>1且-1<x<0C.-1<x<0D.x>1或-1<x<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知全集U={1,2,3,4},集合A={1,2,4},B={2,3,4},則A∩∁uB=( 。
A.{1}B.{2,3}C.{1,2,4}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖的程序框圖,如果輸入的t∈[-3,3],則輸出的S屬于( 。
A.[-4,9]B.[0,3]C.[-9,4]D.[-9,3]

查看答案和解析>>

同步練習(xí)冊答案