6.已知函數(shù)f(x)=|x+2|-|2x-a|,(a∈R).
(Ⅰ)當(dāng)a=3時(shí),解不等式f(x)>0;
(Ⅱ)當(dāng)x∈[0,+∞)時(shí),f(x)<3恒成立,求a的取值范圍.

分析 (Ⅰ)當(dāng)a=3時(shí),不等式即|x+2|-|2x-3|>0,把它等價(jià)轉(zhuǎn)化為與之等價(jià)的三個(gè)不等式組,求出每個(gè)不等式組的解集,再取并集,即得所求.
(Ⅱ)由題意,當(dāng)x∈[0,+∞)時(shí),|a-2x|>x-1 恒成立,分類討論x的范圍,分別求得a的范圍,綜合可得a的取值范圍.

解答 解:(Ⅰ)當(dāng)a=3時(shí),不等式f(x)>0,即|x+2|-|2x-3|>0,
∴$\left\{\begin{array}{l}{x≤-2}\\{-x-2-(3-2x)>0}\end{array}\right.$①,或$\left\{\begin{array}{l}{-2<x≤\frac{3}{2}}\\{x+2-(3-2x)>0}\end{array}\right.$②,或$\left\{\begin{array}{l}{x>\frac{3}{2}}\\{x+2-(2x-3)>0}\end{array}\right.$③,
解①求得x∈∅,解②求得$\frac{1}{3}$<x≤$\frac{3}{2}$,解③求得$\frac{3}{2}$<x<5.
綜上可得,不等式f(x)>0的解集為{x|$\frac{1}{3}$<x<5}.
(Ⅱ)當(dāng)x∈[0,+∞)時(shí),f(x)<3恒成立,即|x+2|-|2x-a|<3恒成立,即x+2-|2x-a|<3恒成立,
即|a-2x|>x-1 恒成立,
當(dāng)x∈[0,1)時(shí),x-1<0,顯然滿足條件,此時(shí),a為任意值.
當(dāng)x=1時(shí),x-1=0,此時(shí),a≠2.
當(dāng)x>1時(shí),可得a-2x>x-1,或 a-2x<1-x.
即a>3x-1,或a<x+1,求得a≤2.
綜上可得,a<2.

點(diǎn)評 本題主要考查絕對值不等式的解法,函數(shù)的恒成立問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}的前n項(xiàng)和Sn=2(an-1),等差數(shù)列{bn}滿足b1=a1,b4=a3,其中n∈N*.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若Cn=(-1)nbnbn+1,求數(shù)列{cn}的前2n項(xiàng)和T2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,三棱錐P-ABC中,底面ABC為等邊三角形,O為△ABC的中心,平面PBC⊥平面ABC,PB=PC=BC=$\sqrt{3}$,D為AP上一點(diǎn),且AD=2DP.
(I)求證:DO∥平面PBC;
(II)求證:AC⊥平面OBD;
(III)設(shè)M為PC的中點(diǎn),求二面角M-BD-O的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=alnx-(a+b)x+x2(a,b∈R).
(I)若a=2,b=1,求函數(shù)f(x)在x=1處的切線方程;
(II) 若f(x)在x=1處取得極值,討論函數(shù)f(x)的單調(diào)性;
(III)當(dāng)a=1時(shí),設(shè)函數(shù)φ(x)=f(x)-x2有兩個(gè)零點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知向量$\overrightarrow{a}$=(sinθ,1),$\overrightarrow$=(cosθ,$\frac{1}{2}$),且$\overrightarrow{a}$∥$\overrightarrow$,則2cos($\frac{3π}{2}$+2θ)+$\frac{1}{2}$cos2θ的值為( 。
A.$\frac{13}{10}$B.$\frac{19}{10}$C.$\frac{3}{2}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合A={y|y=2x,-1<x<2},B={x|(x-1)(x+2)<0},則A∩B=( 。
A.(-2,3)B.(-2,1)C.$(\frac{1}{2},2)$D.$(\frac{1}{2},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出S的值為15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}-{x^2}+2x-\frac{5}{4},(x≤1)\\{log_{\frac{1}{3}}}x-\frac{1}{4}.(x>1)\end{array}$,g(x)=|A-2|•sinx(x∈R),若對任意的x1、x2∈R,都有f(x1)≤g(x2),則實(shí)數(shù)A的取值范圍為( 。
A.$(-∞,\frac{9}{4}]$B.$[\frac{7}{4},+∞)$C.$[\frac{7}{4},\frac{9}{4}]$D.$(-∞,\frac{7}{4}]∪$$[\frac{9}{4},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知A,B,C,D四點(diǎn)共面,BC=2,AB2+AC2=20,$\overrightarrow{CD}=3\overrightarrow{CA}$,則|$\overrightarrow{BD}$|的最大值為10.

查看答案和解析>>

同步練習(xí)冊答案