16.已知數(shù)列{an}的前n項(xiàng)和Sn=2(an-1),等差數(shù)列{bn}滿足b1=a1,b4=a3,其中n∈N*.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若Cn=(-1)nbnbn+1,求數(shù)列{cn}的前2n項(xiàng)和T2n

分析 (I)數(shù)列{an}的前n項(xiàng)和Sn=2(an-1),n=1時(shí),a1=2(a1-1),解得a1.n≥2時(shí),an=Sn-Sn-1,化為:an=2an-1.利用等比數(shù)列的通項(xiàng)公式可得∴an.等差數(shù)列{bn}滿足b1=a1=2,b4=a3=8.公差d滿足:2+3d=8,解得d即可得出.
(II)Cn=(-1)nbnbn+1=(-1)n×4n(n+1).可得c2k-1+c2k=-4(2k-1)×2k+4(2k)(2k+1)=16k.利用分組求和即可得出.

解答 解:(I)數(shù)列{an}的前n項(xiàng)和Sn=2(an-1),n=1時(shí),a1=2(a1-1),解得a1=2.
n≥2時(shí),an=Sn-Sn-1=2(an-1)-2(an-1-1),化為:an=2an-1
∴數(shù)列{an}是等比數(shù)列,首項(xiàng)與公比都為2.
∴an=2n
等差數(shù)列{bn}滿足b1=a1=2,b4=a3=8,其中n∈N*.
公差d滿足:2+3d=8,解得d=2.
∴bn=2+2(n-1)=2n.
(II)Cn=(-1)nbnbn+1=(-1)n×4n(n+1).
∴c2k-1+c2k=-4(2k-1)×2k+4(2k)(2k+1)=16k.
∴數(shù)列{cn}的前2n項(xiàng)和T2n=16×(1+2+…+n)=16×$\frac{n(n+1)}{2}$=8n2+8n.

點(diǎn)評(píng) 本題考查了分組求和方法、等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式、數(shù)列遞推關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.執(zhí)行如圖所示的程序框圖,若輸入t的值為5,則輸出的S的值為( 。
A.$\frac{11}{8}$B.$\frac{9}{16}$C.$\frac{5}{4}$D.$\frac{21}{16}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.閱讀如圖的程序框圖,若運(yùn)行此程序,則輸出S的值為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)x,y滿足條件$\left\{\begin{array}{l}{3x-y-6≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則$\frac{3}{a}$$+\frac{2}$的最小值為( 。
A.4B.6C.12D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知集合A={x|1<x<3},B={x|y=log2(2-x)},則A∩B=(  )
A.(0,3)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.現(xiàn)有若干(大于20)件某種自然生長(zhǎng)的中藥材,從中隨機(jī)抽取20件,其重量都精確到克,規(guī)定每件中藥材重量不小于15克為優(yōu)質(zhì)品.如圖所示的程序框圖表示統(tǒng)計(jì)20個(gè)樣本中的優(yōu)質(zhì)品數(shù),其中m表示每件藥材的重量,則圖中①,②兩處依次應(yīng)該填的整數(shù)分別是14,19.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>1)的左焦點(diǎn)F與拋物線y2=-4x的焦點(diǎn)重合,直線x-y+$\frac{\sqrt{2}}{2}$=0與以原點(diǎn)O為圓心,以橢圓的離心率e為半徑的圓相切.
(1)求該橢圓C的方程;
(2)過(guò)點(diǎn)F的直線交橢圓于A、B兩點(diǎn),線段AB的中點(diǎn)為G,AB的垂直平分線與x軸和y軸分別交于D、E兩點(diǎn),記△GFD的面積為S1,△OED的面積為S2,問(wèn):是否存在直線AB,使得S1=S2,若存在,求直線AB的方程,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在《九章算術(shù)》中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱為陽(yáng)馬,將四個(gè)面都為直角三角形的四面體稱為鱉臑,某幾何體τ的三視圖如圖所示,將該幾何體分別沿棱和表面的對(duì)角線截開(kāi)可得到到一個(gè)鱉臑和一個(gè)陽(yáng)馬,設(shè)V表示體積,則Vτ的外接球:V陽(yáng)馬:V鱉臑=( 。
A.9π:2:1B.3$\sqrt{3}$π:3:1C.3$\sqrt{3}$π:2:1D.3$\sqrt{3}$π:1:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=|x+2|-|2x-a|,(a∈R).
(Ⅰ)當(dāng)a=3時(shí),解不等式f(x)>0;
(Ⅱ)當(dāng)x∈[0,+∞)時(shí),f(x)<3恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案