【題目】一個三位數(shù),個位、十位、百位上的數(shù)字依次為x,y,z,當(dāng)且僅當(dāng)y>x,y>z時,稱這樣的數(shù)為“凸數(shù)”(如243),現(xiàn)從集合{1,2,3,4}中取出三個不相同的數(shù)組成一個三位數(shù),則這個三位數(shù)是“凸數(shù)”的概率為( )
A.B.C.D.
【答案】B
【解析】
根據(jù)題意,分析“凸數(shù)”的定義,可得要得到一個滿足三個不相同的數(shù)組成的三位“凸數(shù)”,在{1,2,3,4}的4個整數(shù)中任取3個數(shù)字,組成三位數(shù),再將最大的放在十位上,剩余的2個數(shù)字分別放在百、個位上即可,再利用古典概型概率計算公式即可得到所求概率.
解:從集合{1,2,3,4}中取出三個不相同的數(shù)組成一個三位數(shù)共有24個結(jié)果:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432,其中是“凸數(shù)”的是132,142,143,231,241,243,341,342,共8個結(jié)果,所以這個三位數(shù)是“凸數(shù)”的概率,
故選:B.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,為自然對數(shù)的底數(shù).
(1)當(dāng)時,判斷零點個數(shù)并求出零點;
(2)若函數(shù)存在兩個不同的極值點,,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在區(qū)間上, , , , , , 均可為一個三角形的三邊長,則稱函數(shù)為“三角形函數(shù)”.已知函數(shù)在區(qū)間上是“三角形函數(shù)”,則實數(shù)的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)與g(x)=3elnx+mx的圖象有4個不同的交點,則實數(shù)m的取值范圍是( )
A.(﹣3,)B.(﹣1,)C.(﹣1,3)D.(0,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,直線的方程為2ρcosθ+5ρsinθ﹣8=0,曲線E的方程為ρ=4cosθ.
(1)以極點O為直角坐標(biāo)原點,極軸為x軸正半軸建立平面直角坐標(biāo)系,分別寫出直線l與曲線E的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線E交于A,B兩點,點C在曲線E上,求△ABC面積的最大值,并求此時點C的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx+2x﹣1.
(1)求f(x)的極值;
(2)若對任意的x>1,都有f(x)﹣k(x﹣1)>0(k∈Z)恒成立,求k的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)=loga(1+x)+loga(3﹣x)(a>0,a≠1)且f(1)=2.
(1)求a的值及f(x)的定義域;
(2)求f(x)在區(qū)間[0,]上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,討論函數(shù)的單調(diào)性;
(2)設(shè),是否存在實數(shù),對任意,,,有恒成立?若存在,求出的范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】的三個內(nèi)角,,所對的邊分別為,,,.
(1)求的大;
(2)若為銳角三角形,求函數(shù)的取值范圍;
(3)現(xiàn)在給出下列三個條件:①;②;③,試從中再選擇兩個條件以確定,求出所確定的的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com