分析 (1)欲證EF∥平面CB1D1,根據(jù)直線與平面平行的判定定理可知只需證EF與平面CB1D1內(nèi)一直線平行,連接BD,根據(jù)中位線可知EF∥BD,則EF∥B1D1,又B1D1?平面CB1D1,EF?平面CB1D1,滿足定理所需條件;
(2)欲證平面CAA1C1⊥平面CB1D1,根據(jù)面面垂直的判定定理可知在平面CB1D1內(nèi)一直線與平面CAA1C1垂直,而AA1⊥平面A1B1C1D1,B1D1?平面A1B1C1D1,則AA1⊥B1D1,A1C1⊥B1D1,滿足線面垂直的判定定理則B1D1⊥平面CAA1C1.
解答 (本題滿分為12分)
證明:(1)連接BD,
因?yàn)檎襟w,所以BB1∥DD1,所以四邊形BDD1B1為平行四邊形,
所以BD∥B1D1,
因?yàn)镋F∥BD,由平行線傳遞性得:EF∥B1D1,
因?yàn)锽1D1?面CB1D1,EF?面CB1D1,
所以EF∥平面CB1D1.(6分)
(2)因?yàn)樵谡襟w中,AA1⊥平面A1B1C1D1,而B1D1?平面A1B1C1D1,
所以AA1⊥B1D1.(10分)
又因?yàn)樵谡叫蜛1B1C1D1中,A1C1⊥B1D1,
所以B1D1⊥平面CAA1C1.(12分)
點(diǎn)評(píng) 本題主要考查線面平行的判定定理和線面垂直的判定定理.考查對(duì)基礎(chǔ)知識(shí)的綜合應(yīng)用能力和基本定理的掌握能力,考查了空間想象能力和推理論證能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,0} | B. | {(1,0)} | C. | {x=1,y=0} | D. | (1,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1<a<1 | B. | 0<a<2 | C. | $a<-\frac{1}{2}$或$a>\frac{3}{2}$ | D. | $-\frac{1}{2}<a<\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {an}是單調(diào)遞減數(shù)列 | B. | {an}是單調(diào)遞增數(shù)列 | ||
C. | {an}是周期數(shù)列 | D. | {an}是常數(shù)數(shù)列 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com