1.在R上定義運(yùn)算?:x?y=x(1-y),要使不等式(x-a)?(x+a)>1成立,則實(shí)數(shù)a的取值范圍是( 。
A.-1<a<1B.0<a<2C.$a<-\frac{1}{2}$或$a>\frac{3}{2}$D.$-\frac{1}{2}<a<\frac{3}{2}$

分析 利用新定義化簡不等式可得到a2-a-1>x2-x成立即可,只需a2-a-1>x2-x的最小值即可,由二次函數(shù)求最值可得a的不等式,解不等式可得.

解答 解:由已知(x-a)?(x+a)>1成立,
∴(x-a)(1-x-a)>1成立,
即a2-a-1>x2-x成立.
令t=x2-x,只要a2-a-1>tmin
t=x2-x=(x-$\frac{1}{2}$)2-$\frac{1}{4}$,當(dāng)x∈R,t≥-$\frac{1}{4}$.
∴a2-a-1>-$\frac{1}{4}$,即4a2-4a-3>0,
解得:a>$\frac{3}{2}$或a<-$\frac{1}{2}$.
故選:C.

點(diǎn)評 本題考查新定義,涉及一元二次不等式的解集和恒成立問題,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)$f(x)=\frac{1}{{\sqrt{1-{2^x}}}}$的定義域是( 。
A.{x|x≥0}B.{x|x≤0}C.{x|x>0}D.{x|x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為棱AD,AB的中點(diǎn).
(1)求證:EF∥平面CB1D1;
(2)求證:B1D1⊥平面CAA1C1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.有一長為1km的斜坡,它的坡角為20°,現(xiàn)不改變坡的高度,填土將坡角改為10°,則斜坡變?yōu)椋ā 。?table class="qanwser">A.2cos10°B.2sin10°C.cos20°D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=$\frac{4}{3}$•$\frac{|x-1|}{{x}^{2}+3}$,g(x)=asin($\frac{π}{3}$x+$\frac{3}{2}$π)-2a+2(a>0),給出下列結(jié)論:
①函數(shù)f(x)的值域?yàn)閇0,$\frac{2}{3}$];
②函數(shù)g(x)在[0,1]上是增函數(shù);
③對任意a>0,方程f(x)=g(x)在區(qū)間[0,1]內(nèi)恒有解;
④若?x1∈R,x2∈[0,1],使得f(x1)=g(x2)成立,則實(shí)數(shù)a的取值范圍是:$\frac{4}{9}$≤a≤$\frac{4}{5}$.
其中所有正確結(jié)論的序號為①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)$f(x)={log_{\frac{1}{2}}}\frac{1+x}{x-1}$.
(I)若a>b>1,試比較f(a)與f(b)的大;
(Ⅱ)若函數(shù)g(x)=f(x)-($\frac{1}{2}$)x+m,且g(x)在區(qū)間[3,4]上沒有零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)數(shù)列的通項(xiàng)公式是an=$\frac{n-t(t-1)}{n-{t}^{2}}$,若a3最大,a4最小,則實(shí)數(shù)t的取值范圍為( 。
A.($\sqrt{3}$,2)B.(1,2)C.(-2,-$\sqrt{3}$)∪($\sqrt{3}$,2)D.(-2,-$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.函數(shù)f(x)=x-lnx.
(1)判斷函數(shù)f(x)的奇偶性,并說明理由;
(2)請畫出函數(shù)f(x)的大致圖象,并指出其單調(diào)區(qū)間和最值;
(3)求函數(shù)f(x)的區(qū)間[a,a+1](a>0)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如果角α的終邊經(jīng)過點(diǎn)P(sin780°,cos(-330°)),則sinα=( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.1

查看答案和解析>>

同步練習(xí)冊答案