【題目】如圖所示,已知橢圓的焦距為 ,直線被橢圓 截得的弦長為 .

(1)求橢圓 的方程;

(2)設(shè)點(diǎn)是橢圓 上的動(dòng)點(diǎn),過原點(diǎn)引兩條射線與圓分別相切,且的斜率存在. ①試問 是否為定值?若是,求出該定值,若不是,說明理由;

②若射線與橢圓 分別交于點(diǎn),求的最大值.

【答案】(1);(2)①,②.

【解析】試題分析:(1)利用題意求出點(diǎn)的坐標(biāo),將點(diǎn)的坐標(biāo)代入橢圓方程,進(jìn)而求出橢圓的標(biāo)準(zhǔn)方程;(2)①設(shè)出射線方程,利用直線和圓相切得到有關(guān)關(guān)系式,再結(jié)合點(diǎn)在橢圓上進(jìn)行證明;②聯(lián)立直線和橢圓方程,得到相關(guān)點(diǎn)的坐標(biāo),再利用基本不等式求其最值.

試題解析: (1) 依題意得,設(shè)直線 與橢圓 相交于 兩點(diǎn),則,不妨設(shè),又,解得,所以橢圓 的方程為.

(2) ①設(shè)射線方程為,則,兩邊平方整理得, .

②聯(lián)立,消去 ,同理,

,當(dāng)且僅當(dāng)時(shí),取等號.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)場計(jì)劃種植某種新作物,為此對這種作物的兩個(gè)品種分別稱為品種甲和品種乙進(jìn)行田間試驗(yàn)選取兩大塊地,每大塊地分成小塊地,在總共小塊地中,隨機(jī)選小塊地種植品種甲,另外小塊地種植品種乙

1假設(shè),求第一大塊地都種植品種甲的概率;

2試驗(yàn)時(shí)每大塊地分成小塊,即,試驗(yàn)結(jié)束后得到品種甲和品種乙在各小塊地上的每公頃產(chǎn)量單位:kg/hm2如下表:

分別求品種甲和品種乙的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗(yàn)結(jié)果,你認(rèn)為應(yīng)該種植哪一品種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列的各項(xiàng)均為正數(shù),且, .

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)設(shè),求數(shù)列的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)已知函數(shù)f(x)=|lnx|,正數(shù)a,b滿足a<b,且f(a)=f(b),若f(x)在區(qū)間[a2 , b]上的最大值為2,則2a+b=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 ,設(shè)直線與橢圓交于不同兩點(diǎn),且.若點(diǎn)滿足,則=______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓方程為,雙曲線的兩條漸近線分別為 ,過橢圓的右焦點(diǎn)作直線,使,又交于點(diǎn),設(shè)直線與橢圓的兩個(gè)交點(diǎn)由上至下依次為 . 

(1)若所成的銳角為,且雙曲線的焦距為4,求橢圓的方程;

(2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】孝感市及周邊地區(qū)的市民游玩又添新去處啦!孝感熙鳳水鄉(xiāng)旅游度假區(qū)于2017年10月1日正式對外開放.據(jù)統(tǒng)計(jì),從2017年10月1日到10月7日參觀孝感市熙鳳水鄉(xiāng)旅游度假區(qū)的人數(shù)如表所示:

日期

1日

2日

3日

4日

5日

6日

7日

人數(shù)(萬)

11

13

8

9

7

8

10

(1)把這7天的參觀人數(shù)看成一個(gè)總體,求該總體的眾數(shù)和平均數(shù)(精確到0.1);

(2)用簡單隨機(jī)抽樣方法從10月1日到10月4日中抽取2天,它們的參觀人數(shù)組成一個(gè)樣本,求該樣本平均數(shù)與總體平均數(shù)之差的絕對值不超過1萬的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率是,且過點(diǎn).直線與橢圓相交于兩點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)求的面積的最大值;

(Ⅲ)設(shè)直線, 分別與軸交于點(diǎn), .判斷, 大小關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,丨φ丨< )的部分圖象如圖所示,則f(x)的解析式為(
A.f(x)=2sin(x+
B.f(x)=2sin(2x+
C.f(x)=2sin(2x﹣
D.f(x)=2sin(4x﹣

查看答案和解析>>

同步練習(xí)冊答案