如圖,矩形ABCD中,AB=3,BC=4.E,F(xiàn)分別在線段BC和AD上,EF//AB,將矩形ABEF沿EF折起.記折起后的矩形為MNEF,且平面MNEF⊥平面ECDF.
(1)求證:NC∥平面MFD;
(2)若EC=3,求證:ND⊥FC;
(3)求四面體NFEC體積的最大值.
(1)證明:由四邊形MNEF,EFDC都是矩形,得到MN∥EF∥CD,MN=EF=CD.
推出四邊形MNCD是平行四邊形,從而NC∥平面MFD.
(2)證明:連接ED,設(shè)ED∩FC=O.推出FC⊥NE.又EC=CD,所以四邊形ECDF為正方形,結(jié)合 FC⊥ED.推出FC⊥平面NED,所以ND⊥FC.(3)x=2時(shí),四面體NFEC的體積有最大值2.
解析試題分析:(1)證明:因?yàn)樗倪呅蜯NEF,EFDC都是矩形,所以MN∥EF∥CD,MN=EF=CD.
所以四邊形MNCD是平行四邊形,所以NC∥MD,因?yàn)镹C?平面MFD,所以NC∥平面MFD. 4分
(2)證明:連接ED,設(shè)ED∩FC=O.因?yàn)槠矫鍹NEF⊥平面ECDF,且NE⊥EF,所以NE⊥平面ECDF, 5分
所以FC⊥NE.又EC=CD,所以四邊形ECDF為正方形,所以 FC⊥ED.所以FC⊥平面NED,
所以ND⊥FC. 8分
(3)解:設(shè)NE=,則EC=4-,其中0<x<4.由(1)得NE⊥平面FEC,所以四面體NFEC的體積為,所以.
當(dāng)且僅當(dāng),即x=2時(shí),四面體NFEC的體積有最大值2.
考點(diǎn):本題主要考查立體幾何中的平行關(guān)系、垂直關(guān)系,幾何體體積計(jì)算,均值定理的應(yīng)用。
點(diǎn)評(píng):典型題,立體幾何題,是高考必考內(nèi)容,往往涉及垂直關(guān)系、平行關(guān)系、角、距離、體積的計(jì)算。在計(jì)算問題中,有“幾何法”和“向量法”。利用幾何法,要遵循“一作、二證、三計(jì)算”的步驟,(1)(2)小題,將立體問題轉(zhuǎn)化成平面問題,這也是解決立體幾何問題的一個(gè)基本思路。(3)利用函數(shù)思想,構(gòu)建體積函數(shù)表達(dá)式,應(yīng)用均值定理,求得體積的最大值。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱錐P-ABC中,PC平面ABC,PC=AC=2,AB=BC,D是PB上一點(diǎn),且CD平面PAB
(1)求證:AB平面PCB;
(2)求異面直線AP與BC所成角的大。
(3)求二面角C-PA-B 的大小的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面是矩形,側(cè)棱⊥底面,,是的中點(diǎn),為的中點(diǎn).
(1)證明:平面
(2)若為直線上任意一點(diǎn),求幾何體的體積;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖:四棱錐中,,,.∥,..
(Ⅰ)證明: 平面;
(Ⅱ)在線段上是否存在一點(diǎn),使直線與平面成角正弦值等于,若存在,指出點(diǎn)位置,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(理科)(本小題滿分12分)如圖分別是正三棱臺(tái)ABC-A1B1C1的直觀圖和正視圖,O,O1分別是上下底面的中心,E是BC中點(diǎn).
(1)求正三棱臺(tái)ABC-A1B1C1的體積;
(2)求平面EA1B1與平面A1B1C1的夾角的余弦;
(3)若P是棱A1C1上一點(diǎn),求CP+PB1的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,在四棱錐中,底面為矩
形,⊥平面,,為上的點(diǎn),若⊥平面
(1)求證:為的中點(diǎn);
(2)求二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
本題共有2個(gè)小題,第(1)小題滿分6分,第(2)小題滿分6分.
如圖,已知正四棱柱的底面邊長是,體積是,分別是棱、的中點(diǎn).
(1)求直線與平面所成的角(結(jié)果用反三角函數(shù)表示);
(2)求過的平面與該正四棱柱所截得的多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在正三棱柱中,,是的中點(diǎn),是線段上的動(dòng)點(diǎn)(與端點(diǎn)不重合),且.
(1)若,求證:;
(2)若直線與平面所成角的大小為,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com