分析 利用底面是正方形的長(zhǎng)方體ABCD-A1B1C1D1,證明MN⊥BD,根據(jù)MN⊥AC,證明MN⊥平面ABCD,利用BB1⊥平面ABCD,即可得出MN∥BB1.
解答 解:由長(zhǎng)方體的性質(zhì)知,AA1⊥平面ABCD,∴AA1⊥BD,
∵BD⊥AC,AA1∩AC=A,
∴BD⊥平面ACCA${\;}_1^{\;}$,
∵MN在平面ACCA${\;}_1^{\;}$內(nèi),
∴MN⊥BD,
∵M(jìn)N⊥AC,∴MN⊥平面ABCD,
∵BB1⊥平面ABCD,
∴MN∥BB1,
故答案為:平行.
點(diǎn)評(píng) 本題考查線面垂直,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | 0 | C. | -2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (a+b)2≤4ab,$a+b≤\sqrt{2{a^2}+2{b^2}}$ | B. | (a+b)2≥4ab,$a+b≤\sqrt{2{a^2}+2{b^2}}$ | ||
C. | (a+b)2≤4ab,$a+b≥\sqrt{2{a^2}+2{b^2}}$ | D. | (a+b)2≥4ab,$a+b≥\sqrt{2{a^2}+2{b^2}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(4+2\sqrt{13})π$ | B. | $6+(2+\sqrt{13})π$ | C. | $(\sqrt{13}+2)π$ | D. | $8+2\sqrt{13}π$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com