19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-1(x≥0)}\\{-2x(x<0)}\end{array}\right.$,則f(-1)=( 。
A.2B.0C.-2D.1

分析 利用分段函數(shù)的意義即可得出.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-1(x≥0)}\\{-2x(x<0)}\end{array}\right.$,
∴f(-1)=-2×(-1)=2,
故選:A.

點評 本題查克拉分段函數(shù)的性質(zhì)及其應(yīng)用,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=loga$\frac{1-mx}{x-1}$,(a>0且a≠1)是奇函數(shù)
(1)求m的值;
(2)討論f(x)在(1,+∞)上的單調(diào)性,并用單調(diào)性的定義加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知x>1,且x+x-1=11,求${x}^{\frac{1}{2}}$-${x}^{-\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)向量$\overrightarrow{a}$=(-1,1),$\overrightarrow$=(4,1),$\overrightarrow{c}$=(cosθ,λsinθ)(λ∈R).
(1)設(shè)$\overrightarrow{a}$,$\overrightarrow$的夾角為α,求tanα;
(2)若(2$\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$的最大值$\sqrt{5}$,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若z=$\frac{3+2i}{i}$,則|$\overline{z}$-1|等于( 。
A.3B.5C.$\sqrt{10}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)y=2sin(ωx+$\frac{π}{3}$)(ω>0)的最小正周期是2π,則ω等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)=sin$\frac{π}{6}$x,則f(1)+f(2)+f(3)+…+f(2009)的值等于( 。
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1+\sqrt{3}}{2}$D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在底面是正方形的長方體ABCD-A1B1C1D1中,MN是在平面ACCA${\;}_1^{\;}$內(nèi),且MN⊥AC,則MN和BB1的位置關(guān)系是平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)a>0,b>1,若a+b=2,則$\frac{4}{a}$+$\frac{1}{b-1}$的最小值為9.

查看答案和解析>>

同步練習(xí)冊答案