17.已知四棱錐V-ABCD,底面ABCD是邊長為2的正方形,VA⊥平面ABCD,且VA=4,則此四棱錐的側(cè)面中,所有直角三角形的面積的和是8+4$\sqrt{5}$.

分析 由線面垂直的判定與性質(zhì),可證出△VAB、△VAD、△VBC、△VCD都是直角三角形.由VA=4且AB=AD=2,根據(jù)勾股定理算出VB=VD=2$\sqrt{5}$,最后利用直角三角形的面積公式即可算出所有直角三角形的面積的和

解答 解:∵VA⊥平面ABCD,BC?平面ABCD,∴VA⊥BC
∵底面ABCD是正方形,可得BC⊥AB,VA∩AB=A,
∴BC⊥平面VAB,結(jié)合VB?平面VAB,得BC⊥VB
同理可得CD⊥VD,
∵VA⊥平面ABCD,AB、AD?平面ABCD,
∴VA⊥AB且VA⊥AD
綜上所述,四棱錐的四個(gè)側(cè)面都是直角三角形,
∵VA=4,AB=AD=2,∴VB=VD=$\sqrt{{4}^{2}+{2}^{2}}$=2$\sqrt{5}$,
由此可得,所有直角三角形的面積的和為
S=2×$\frac{1}{2}$×2×4+2×$\frac{1}{2}$×2×$2\sqrt{5}$=8+4$\sqrt{5}$.
故答案為:8+4$\sqrt{5}$.

點(diǎn)評 本題給出底面為正方形且一條側(cè)棱與底面垂直的四棱錐,求它的側(cè)面所有直角三角形面積之和,著重考查了線面垂直的判定與性質(zhì)、勾股定理與直角三角形的面積公式等知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.(1)設(shè)由三個(gè)有序數(shù)組成的集合A={(x1,x2,x3)|xi∈{-1,0,1},i=1,2,3},求集合A中滿足條件“|x1|+|x2|+|x3|=2”的元素個(gè)數(shù)n;
(2)在(1)的條件下,設(shè)f(x)=(a+bx+cx2n=a0+a1x+a2x2+…+a2nx2n,若a0+a2+…+a2n=a1+a3+…+a2n-1=211,求正數(shù)a,c的積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.下列命題正確的有0個(gè)
(1)三點(diǎn)確定一個(gè)平面;
(2)經(jīng)過同一點(diǎn)的三條直線確定一個(gè)平面;
(3)設(shè)A表示點(diǎn),a表示直線,α表示平面,若A∈a,A∈α,則a?α;
(4)平面α和平面β有不在同一直線上的三個(gè)公共點(diǎn)A,B,C;
(5)如果一條直線與兩條直線都相交,那么這三條直線確定一個(gè)平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個(gè)動(dòng)點(diǎn)E、F,且EF=$\frac{{\sqrt{2}}}{2}$,則下列結(jié)論中正確的個(gè)數(shù)是( 。
①EF∥平面ABCD;
②平面ACF⊥平面BEF;
③三棱錐E-ABF的體積為定值;
④存在某個(gè)位置使得異面直線AE與BF成角30o
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在正方體的八個(gè)頂點(diǎn)中,有四個(gè)恰好是正四面體(四個(gè)面都是正三角形的三棱錐)的頂點(diǎn),則正方體的表面積與此正四面體的表面積的比值為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.圖中的程序框圖的算法思路來源于我國古代數(shù)學(xué)名著《九章算術(shù)》中的“更相減損術(shù)”,執(zhí)行該程序框圖,若輸入a,b,i的值分別為6、8、0,則輸出的i=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.先后擲骰子兩次,落在水平桌面后,記正面朝上的點(diǎn)數(shù)分別為x,y,設(shè)事件A為“x+y為偶數(shù)”,事件B為“x≠y”,則概率P(B|A)=( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對邊,acosC+$\sqrt{3}$asinC-b-c=0
(Ⅰ)求A的大小
(Ⅱ)若△ABC為銳角三角形,且a=$\sqrt{3}$,求b2+c2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.復(fù)數(shù)$\frac{2}{1-i}$-2i(i為虛數(shù)單位)的共軛復(fù)數(shù)的虛部等于( 。
A.-1B.1-iC.iD.1

查看答案和解析>>

同步練習(xí)冊答案