9.設(shè)函數(shù)f(x)=asin(x+α)+bsin(x+β)+csin(x+γ),則p:“f($\frac{π}{2}$)=0”是q:“f(x)為偶函數(shù)”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分又不必要條件

分析 ①由f($\frac{π}{2}$)=0,可得:asin($\frac{π}{2}$+α)+bsin($\frac{π}{2}$+β)+csin($\frac{π}{2}$+γ)=0,可得acosα+bcosβ+ccosγ=0,即可得出f(-x)-f(x)=0,可得“f(x)為偶函數(shù)”.
②反之不成立,例如取$f(\frac{π}{2}+2kπ)$=0,(k∈Z,k≠0).即可得出.

解答 解:①由f($\frac{π}{2}$)=0,可得:asin($\frac{π}{2}$+α)+bsin($\frac{π}{2}$+β)+csin($\frac{π}{2}$+γ)=0,∴acosα+bcosβ+ccosγ=0,
∴f(-x)-f(x)=asin(-x+α)+bsin(-x+β)+csin(-x+γ)-asin(x+α)-bsin(x+β)-csin(x+γ)
=-2asinxcosα-2asinxcosβ-2asinxcosγ=0,∴“f(x)為偶函數(shù)”.
②反之不成立,例如取$f(\frac{π}{2}+2kπ)$=0,(k∈Z,k≠0).
∴p是q的充分不必要條件.
故選:A.

點評 本題考查了函數(shù)奇偶性、和差公式、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.雙曲線x2-$\frac{{y}^{2}}{^{2}}$=1(b>0)的左、右焦點分別為F1、F2,直線l過F2且與雙曲線交于A、B兩點.
(1)若l的傾斜角為$\frac{π}{2}$,△F1AB是等邊三角形,求雙曲線的漸近線方程;
(2)設(shè)b=$\sqrt{3}$,若l的斜率存在,且|AB|=4,求l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|x-3|,g(x)=-|x+4|+2m.
(Ⅰ)當(dāng)a>1時,關(guān)于x的不等式f(x)+1-a>0(a∈R)的解集;
(Ⅱ)若函數(shù)f(x)的圖象恒在g(x)圖象的上方,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知正項數(shù)列{an}的前n項和為Sn,對?n∈N*有2Sn=a${\;}_{n}^{2}$+an,令bn=$\frac{\sqrt{{a}_{n+1}}-\sqrt{{a}_{n}}}{\sqrt{{a}_{n+1}}•\sqrt{{a}_{n}}}$,設(shè){bn}的前n項和為Tn,則Tn的最小值為1-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知直線l1:ax+y-1=0,直線l2:x-y-3=0,若直線l1的傾斜角為$\frac{π}{3}$,則a=-$\sqrt{3}$,若l1∥l2,則兩平行直線間的距離為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)集合M={-1,0,1},集合An={(x1,x2,x3,…,xn)|xi∈M,i=1,2…,n},集合An中滿足條件“1≤|x1|+|x2|+…+|xn|≤m”的元素個數(shù)記為${S}_{m}^{n}$.
(1)求${S}_{2}^{2}$和${S}_{2}^{4}$的值;
(2)當(dāng)m<n時,求證:${S}_{m}^{n}$<3n+2m+1-2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.復(fù)數(shù)z=$\frac{4i}{1+i}$(其中i是虛數(shù)單位)的共軛復(fù)數(shù)為( 。
A.2+2iB.-2-2iC.-2+2iD.2-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,a,b,c分別是角A,B,C的對邊,$\frac{cosC}{cosB}$=$\frac{2a-c}$,且a+c=2.
(1)求角B;
(2)求邊長b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)全集U=R,集合A={x|x>2},B={x|x2-4x+3<0},則①A∩B={x|2<x<3};②∁UB={x|x≤1或x≥3}.

查看答案和解析>>

同步練習(xí)冊答案