分析 化兩直線(xiàn)方程為一般式,然后直接由$\left\{\begin{array}{l}1×4-2m(1+m)=0\\ 1×16-2m(m-2)≠0\end{array}\right.$,列式求解m的值,可得平行的條件;由2m+4(1+m)=0,求解m的值,可得垂直的條件;由1×4-2m(1+m)≠0求解m的值,可得相交的條件;
解答 解:由兩直線(xiàn)l1:x+(1+m)y=2-m,l2:2mx+4y=-16,得
l1:x+(1+m)y-2+m=0,l2:2mx+4y+16=0,
由 $\left\{\begin{array}{l}1×4-2m(1+m)=0\\ 1×16-2m(m-2)≠0\end{array}\right.$,解得m=1.
∴當(dāng)m=1時(shí),有l(wèi)1∥l2.
由2m+4(1+m)=0,解得m=$-\frac{2}{3}$,
∴當(dāng)m=$-\frac{2}{3}$時(shí),有l(wèi)1⊥l2,
由1×4-2m(1+m)≠0,解得:m≠1且m≠-2,
∴當(dāng)m≠1且m≠-2時(shí),有l(wèi)1,l2相交.
故答案為:1,$-\frac{2}{3}$,m≠1且m≠-2
點(diǎn)評(píng) 本題考查了直線(xiàn)的一般式方程與直線(xiàn)平行和垂直的關(guān)系,關(guān)鍵是熟記有關(guān)結(jié)論,是基礎(chǔ)的計(jì)算題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x=y2+1 | B. | y=2x2+1 | C. | x-2y=6 | D. | x=$\sqrt{y}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com