分析 由題意可得:設(shè)f(x)=ax2+bx+c(a≠0),方程ax2+bx+c=0的兩根為x1,x2,所以結(jié)合題意可得a=1,b=-4,c=3,進(jìn)而得到函數(shù)的解析式.
解答 解:(1)由題意可得:設(shè)f(x)=ax2+bx+c(a≠0),
二次函數(shù)f(x)滿(mǎn)足f(2+x)=f(2-x),
則其對(duì)稱(chēng)軸為2,即-$\frac{2a}$=2,
方程ax2+bx+c=0的兩根為x1,x2,
所以:${{x}_{1}}^{2}$+${{x}_{2}}^{2}$=(x1+x2)2-2x1x2=(-$\frac{a}$)2-2×$\frac{c}{a}$,
根據(jù)題意可得:$\left\{\begin{array}{l}{-\frac{2a}=2}\\{c=3}\\{{(\frac{a})}^{2}-\frac{2c}{a}=10}\end{array}\right.$⇒$\left\{\begin{array}{l}{a=1}\\{b=-4}\\{c=3}\end{array}\right.$,
所以函數(shù)的解析式為f(x)=x2-4x+3.
點(diǎn)評(píng) 解決此類(lèi)問(wèn)題的關(guān)鍵是熟練掌握求函數(shù)解析式的方法,以及二次函數(shù)的有關(guān)性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com