分析 (1)令y=|x+5|+|x-5|=$\left\{\begin{array}{l}{-2x,x≤-5}\\{10,-5<x≤5}\\{2x,x>5}\end{array}\right.$,作出函數(shù)y的圖象,數(shù)形結(jié)合求得f(x)≤12 的解集.
(2)由函數(shù)f(x)的解析式求得它的最小值,可得滿足條件的a的范圍.
解答 解:(1)令y=|x+5|+|x-5|=$\left\{\begin{array}{l}{-2x,x≤-5}\\{10,-5<x≤5}\\{2x,x>5}\end{array}\right.$,
作出函數(shù)y的圖象,如圖所示:
當(dāng)a=12時,不等式即f(x)≤12,令f(x)=12,求得x=±6,
可得f(x)≤12 的解集為[-6,6].
(2)由于函數(shù)f(x)|=$\left\{\begin{array}{l}{-2x,x≤-5}\\{10,-5<x≤5}\\{2x,x>5}\end{array}\right.$ 的最小值為10,故當(dāng)a<10時,
不等式|x+5|+|x-5|≤a的解集為∅.
點評 本題主要考查對由絕對值的函數(shù),絕對值不等式的解法,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 橢圓 | B. | 拋物線 | C. | 雙曲線 | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}+1$ | B. | $\frac{{\sqrt{5}}}{2}$ | C. | $\frac{{\sqrt{6}+\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{2}+1}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,3) | B. | [-1,3] | C. | (1,3) | D. | [1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 12 | C. | 10 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -2 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com