6.某興趣小組有男生20人,女生10人,從中抽取一個(gè)容量為5的樣本,恰好抽到2名男生和3名女生,則
①該抽樣可能是系統(tǒng)抽樣;
②該抽樣可能是隨機(jī)抽樣:
③該抽樣一定不是分層抽樣;
④本次抽樣中每個(gè)人被抽到的概率都是$\frac{1}{5}$.
其中說法正確的為( 。
A.①②③B.②③C.②③④D.③④

分析 ①該抽樣可以是系統(tǒng)抽樣;
②因?yàn)榭傮w個(gè)數(shù)不多,容易對(duì)每個(gè)個(gè)體進(jìn)行編號(hào),因此該抽樣可能是簡單的隨機(jī)抽樣;
③若總體由差異明顯的幾部分組成時(shí),經(jīng)常采用分層抽樣的方法進(jìn)行抽樣,且分層抽樣的比例相同,該抽樣不可能是分層抽樣;
④分別求出男生和女生的概率,故可判斷出真假

解答 解:①總體容量為30,樣本容量為5,第一步對(duì)30個(gè)個(gè)體進(jìn)行編號(hào),如男生1~20,女生21~30;第二步確定分段間隔k=$\frac{30}{5}$=6;第三步在第一段用簡單隨機(jī)抽樣確定第一個(gè)個(gè)體編號(hào)l(l≤10);第四步將編號(hào)為l+6k(0≤k≤4)依次抽取,即可獲得整個(gè)樣本.故該抽樣可以是系統(tǒng)抽樣.因此①正確.
②因?yàn)榭傮w個(gè)數(shù)不多,可以對(duì)每個(gè)個(gè)體進(jìn)行編號(hào),因此該抽樣可能是簡單的隨機(jī)抽樣,故②正確;
③若總體由差異明顯的幾部分組成時(shí),經(jīng)常采用分層抽樣的方法進(jìn)行抽樣,且分層抽樣的比例相同,但興趣小組有男生20人,女生10人,抽取2男三女,抽的比例不同,故③正確;
④該抽樣男生被抽到的概率$\frac{2}{20}$=$\frac{1}{10}$;女生被抽到的概率=$\frac{3}{10}$,故前者小于后者.因此④不正確.
故選:A.

點(diǎn)評(píng) 本題考查了隨機(jī)抽樣及概率,正確理解它們是解決問題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.($\sqrt{x}$-2x)5的展開式中,含x3項(xiàng)的系數(shù)是( 。
A.-10B.-5C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ln(x-1)+$\frac{ax}{x+1}$(a∈R).
(1)若函數(shù)f(x)在區(qū)間(1,4)上單調(diào)遞增,求a的取值范圍;
(2)若函數(shù)y=f(x)的圖象與直線4x-3y-2=0相切,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知在等比數(shù)列{an}中,a1a3=36,a2+a4=60,Sn>400,則n的取值范圍是n≥8,且n為偶數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)命題p:方程$\frac{x^2}{a+6}+\frac{y^2}{a-7}=1$表示焦點(diǎn)在坐標(biāo)軸上的雙曲線,命題q:?x∈R,x2-4x+a<0.若“p或?q”為真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)f(x)=2x-3,且f(m+1)=5,則m=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,四邊形ABCD中,△ABD是正三角形,△ABC是等腰直角三角形,∠ABC=90°,沿AB將△ABD折起,使得平面ABD⊥平面ABC,若三棱錐D-ABC的外接球的表面積為$\frac{28π}{3}$,則三棱錐D-ABC的側(cè)面ACD的面積為$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中,最小正周期為π且在(0,$\frac{π}{2}$)是減函數(shù)的是( 。
A.y=cos(2x+$\frac{π}{2}$)B.y=|sin(x+$\frac{π}{3}$)|C.y=2cos2x-3D.y=-tan2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$sinx-cosx=\frac{1}{5}$,且$x∈({0,\frac{π}{2}})$,則sinxcosx=$\frac{12}{25}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案