【題目】如圖,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱臺(tái)形玻璃容器Ⅱ的高均為32cm,容器Ⅰ的底面對(duì)角線AC的長(zhǎng)為10cm,容器Ⅱ的兩底面對(duì)角線,的長(zhǎng)分別為14cm62cm.分別在容器Ⅰ和容器Ⅱ中注入水,水深均為12cm現(xiàn)有一根玻璃棒l,其長(zhǎng)度為40cm.(容器厚度、玻璃棒粗細(xì)均忽略不計(jì))

(1)將放在容器Ⅰ中,的一端置于點(diǎn)A處另一端置于側(cè)棱上,沒(méi)入水中部分的長(zhǎng)度;

(2)將放在容器Ⅱ中,的一端置于點(diǎn)E處,另一端置于側(cè)棱上,求沒(méi)入水中部分的長(zhǎng)度.

答案】(1)16(2)20.

思路分析】(1)轉(zhuǎn)化為直角三角形ACM中,利用相似性質(zhì)求解AP1(2)轉(zhuǎn)化到三角形EGN中,先利用直角梯形性質(zhì)求角,再利用正弦定理求角,最后根據(jù)直角三角形求高,即為沒(méi)入水中部分的長(zhǎng)度.

【解析】(1)由正棱柱的定義,平面,所以平面平面,

記玻璃棒的另一端落在上點(diǎn)處.

因?yàn)?/span>,所以,從而,

如圖,與水面的點(diǎn)為,過(guò)作P1Q1AC,Q1為垂足,

則P1Q1平面ABCD,故P1Q1=12,從而AP1=

答:玻璃棒l沒(méi)入水中部分的長(zhǎng)度為16cm.

(如果將沒(méi)入水中部分理解為水面以上部分,則結(jié)果為24cm)

(2)如圖,O,O1是正棱臺(tái)的兩底面中心.

由正棱臺(tái)的定義,OO1平面EFGH,所以平面E1EGG1平面EFGH,O1OEG.

同理,平面E1EGG1平面E1F1G1H1,O1OE1G1

記玻璃棒的另一端落在GG1上點(diǎn)N處.

過(guò)G作GKE1G1,K為垂足,則GK =OO1=32.

因?yàn)镋G = 14,E1G1= 62,

所以KG1=,從而

設(shè)

因?yàn)?/span>,所以

中,由正弦定理可得,解得

因?yàn)?/span>,所以

于是

記EN與水面的交點(diǎn)為P2,過(guò)P2作P2Q2EG,Q2為垂足,則P2Q2平面EFGH,

故P2Q2=12,從而EP2=

答:玻璃棒l沒(méi)入水中部分的長(zhǎng)度為20cm.

(如果將沒(méi)入水中部分理解為水面以上部分,則結(jié)果為20cm)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線

(1)求曲線在點(diǎn)處的切線方程;

(2)過(guò)原點(diǎn)作曲線的切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某大學(xué)餐飲中心為了解新生的飲食習(xí)慣,在全校一年級(jí)學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合 計(jì)

南方學(xué)生

60

20

80

北方學(xué)生

10

10

20

合 計(jì)

70

30

100

⑴根據(jù)表中數(shù)據(jù),問(wèn)是否有95%的把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差

異”;

⑵已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機(jī)

抽取3人,求至多有1人喜歡甜品的概率.

0.100

0.050

0.010

2.706

3.841

6.635

附: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修:坐標(biāo)系與參數(shù)方程選講.

在平面直角坐標(biāo)系中,曲線為參數(shù),實(shí)數(shù)),曲線

為參數(shù),實(shí)數(shù)). 在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,射線交于兩點(diǎn),與交于兩點(diǎn). 當(dāng)時(shí), ;當(dāng)時(shí), .

(1)求的值; (2)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,函數(shù)的圖象在點(diǎn)處的切線平行于軸.

(1)求的值;

(2)求函數(shù)的極小值;

(3)設(shè)斜率為的直線與函數(shù)的圖象交于兩點(diǎn) , ,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,游客從某旅游景區(qū)的景點(diǎn)A處下山至C處有兩種路徑.一種是從A沿直線步行到C,另一種是先從A沿索道乘纜車到B,然后從B沿直線步行到C.

現(xiàn)有甲、乙兩位游客從A處下山,甲沿AC勻速步行,速度為50 m/min,在甲出發(fā)2 min后,乙從A乘纜車到B,在B處停留1 min后,再?gòu)腂勻速步行到C.假設(shè)纜車勻速直線運(yùn)行的速度為130 m/min,山路AC長(zhǎng)為1 260 m,經(jīng)測(cè)量,cos A=,cos C=

(1)求索道AB的長(zhǎng);

(2)問(wèn)乙出發(fā)多少分鐘后,乙在纜車上與甲的距離最短?

(3)為使兩位游客在C處互相等待的時(shí)間不超過(guò)3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】據(jù)統(tǒng)計(jì),截至2016年底全國(guó)微信注冊(cè)用戶數(shù)量已經(jīng)突破9.27億.為調(diào)查大學(xué)生這個(gè)微信用戶群體中每人擁有微信群的數(shù)量,現(xiàn)從某市大學(xué)生中隨機(jī)抽取100位同學(xué)進(jìn)行了抽樣調(diào)查,結(jié)果如下:

(1)求,,的值及樣本中微信群個(gè)數(shù)超過(guò)12的概率;

(2)若從這100位同學(xué)中隨機(jī)抽取2人,求這2人中恰有1人微信群個(gè)數(shù)超過(guò)12的概率;

(3)以(1)中的頻率作為概率,若從全市大學(xué)生中隨機(jī)抽取3人,記表示抽到的是微信群個(gè)數(shù)超過(guò)12的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)性;

)若函數(shù)有兩個(gè)極值點(diǎn),,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017唐山模擬】如圖,ABCDA1B1C1D1為正方體,連接BD,AC1,B1D1, CD1,B1C,現(xiàn)有以下幾個(gè)結(jié)論:①BD∥平面CB1D1;②AC1⊥平面CB1D1;③AC1與底面ABCD所成角的正切值是;④CB1與BD為異面直線,其中所有正確結(jié)論的序號(hào)為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案