【題目】某單位擬建一個(gè)扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點(diǎn)為圓心的兩個(gè)同心圓弧和延長后通過點(diǎn)的兩條直線段圍成.按設(shè)計(jì)要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實(shí)線部分)進(jìn)行裝飾時(shí),直線部分的裝飾費(fèi)用為4元/米,弧線部分的裝飾費(fèi)用為9元/米.設(shè)花壇的面積與裝飾總費(fèi)用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時(shí), 取得最大值?
【答案】(1)(2),
【解析】試題分析:(1)根據(jù)已知條件,將周長米為等量關(guān)系可以建立滿足的關(guān)系式,再由此關(guān)系式進(jìn)一步得到函數(shù)解析式:,即可解得;(2)根據(jù)題意及(1)可得花壇的面積為,裝飾總費(fèi)用為
,因此可得函數(shù)解析式,而要求的最大值,即求函數(shù)的最大值,可以考慮采用換元法令,從而,再利用基本不等式,即可求得的最大值: ,當(dāng)且僅當(dāng), 時(shí)取等號(hào),此時(shí),,因此當(dāng)時(shí),花壇的面積與裝飾總費(fèi)用的比最大.
試題解析:(1)扇環(huán)的圓心角為,則,∴, 3分
(2)由(1)可得花壇的面積為, 6分
裝飾總費(fèi)用為, 8分
∴花壇的面積與裝飾總費(fèi)用的, 10分
令,則,當(dāng)且僅當(dāng), 時(shí)取等號(hào),此時(shí),, 12分
答:當(dāng)時(shí),花壇的面積與裝飾總費(fèi)用的比最大. 13分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為橢圓的右焦點(diǎn), 為上的任意一點(diǎn).
(1)求的取值范圍;
(2)是上異于的兩點(diǎn),若直線與直線的斜率之積為,證明: 兩點(diǎn)的橫坐標(biāo)之和為常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左右焦點(diǎn)分別為,,左頂點(diǎn)為,點(diǎn)在橢圓上,且的面積為.
(1)求橢圓的方程;
(2)過原點(diǎn)且與軸不重合的直線交橢圓于,兩點(diǎn),直線分別與軸交于點(diǎn),,.求證:以為直徑的圓恒過交點(diǎn),,并求出面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的焦點(diǎn)為,拋物線上一定點(diǎn).
(1)求拋物線的方程及準(zhǔn)線的方程;
(2)過焦點(diǎn)的直線(不經(jīng)過點(diǎn))與拋物線交于兩點(diǎn),與準(zhǔn)線交于點(diǎn),記的斜率分別為,問是否存在常數(shù),使得成立?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有六支足球隊(duì)參加單循環(huán)比賽(即任意兩支球隊(duì)只踢一場(chǎng)比賽),第一周的比賽中,各踢了場(chǎng), 各踢了場(chǎng), 踢了場(chǎng),且隊(duì)與隊(duì)未踢過, 隊(duì)與隊(duì)也未踢過,則在第一周的比賽中, 隊(duì)踢的比賽的場(chǎng)數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著共享單車的成功運(yùn)營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨即抽取人對(duì)共享產(chǎn)品是否對(duì)日常生活有益進(jìn)行了問卷調(diào)查,并對(duì)參與調(diào)查的人中的性別以及意見進(jìn)行了分類,得到的數(shù)據(jù)如下表所示:
男 | 女 | 總計(jì) | |
認(rèn)為共享產(chǎn)品對(duì)生活有益 | |||
認(rèn)為共享產(chǎn)品對(duì)生活無益 | |||
總計(jì) |
(1)根據(jù)表中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過的前提下,認(rèn)為對(duì)共享產(chǎn)品的態(tài)度與性別有關(guān)系?
(2)現(xiàn)按照分層抽樣從認(rèn)為共享產(chǎn)品增多對(duì)生活無益的人員中隨機(jī)抽取人,再從人中隨機(jī)抽取人贈(zèng)送超市購物券作為答謝,求恰有人是女性的概率.
參與公式:
臨界值表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某營養(yǎng)學(xué)家建議:高中生每天的蛋白質(zhì)攝入量控制在(單位:克),脂肪的攝入量控制在(單位:克),某學(xué)校食堂提供的伙食以食物和食物為主,1千克食物含蛋白質(zhì)60克,含脂肪9克,售價(jià)20元;1千克食物含蛋白質(zhì)30克,含脂肪27克,售價(jià)15元.
(1)如果某學(xué)生只吃食物,判斷他的伙食是否符合營養(yǎng)學(xué)家的建議,并說明理由;
(2)為了花費(fèi)最低且符合營養(yǎng)學(xué)家的建議,學(xué)生需要每天同時(shí)食用食物和食物各多少千克?并求出最低需要花費(fèi)的錢數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中、為已知實(shí)常數(shù),.
下列所有正確命題的序號(hào)是____________.
①若,則對(duì)任意實(shí)數(shù)恒成立;
②若,則函數(shù)為奇函數(shù);
③若,則函數(shù)為偶函數(shù);
④當(dāng)時(shí),若,則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知兩個(gè)定點(diǎn),, 動(dòng)點(diǎn)滿足,設(shè)動(dòng)點(diǎn)的軌跡為曲線,直線:.
(1)求曲線的軌跡方程;
(2)若是直線上的動(dòng)點(diǎn),過作曲線的兩條切線QM、QN,切點(diǎn)為、,探究:直線是否過定點(diǎn),若存在定點(diǎn)請(qǐng)寫出坐標(biāo),若不存在則說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com