分析 (I)設(shè)動(dòng)點(diǎn)P(x,y),利用兩點(diǎn)之間的距離公式可得$\frac{{\sqrt{{{(x-2)}^2}+{y^2}}}}{|x-4|}=\frac{{\sqrt{2}}}{2}$,化簡(jiǎn)即可得出.
(II)由(Ⅰ),軌跡Ω是以F(2,0)為焦點(diǎn),離心率為$\frac{{\sqrt{2}}}{2}$的橢圓,如圖,連接OM、ON,設(shè)直線MN方程為x=my+2,點(diǎn)M(x1,y1),N(x2,y2),與橢圓方程聯(lián)立消去x,得(m2+2)y2+4my-4=0,利用根與系數(shù)的關(guān)系可得:S=S△OAM+S△OBN+S△OMN=$\frac{1}{2}×2({x_1}+{x_2})+\frac{1}{2}×2|{y_1}-{y_2}|$=m(y1+y2)+4+|y1-y2|=$-\frac{{4{m^2}}}{{{m^2}+2}}+4+\frac{{4\sqrt{2}•\sqrt{{m^2}+1}}}{{{m^2}+2}}$=$\frac{{4\sqrt{2}•\sqrt{{m^2}+1}+8}}{{{m^2}+2}}$,下面利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性或變形利用基本不等式的性質(zhì)即可得出.
解答 解:(Ⅰ)設(shè)動(dòng)點(diǎn)P(x,y),則$\frac{{\sqrt{{{(x-2)}^2}+{y^2}}}}{|x-4|}=\frac{{\sqrt{2}}}{2}$,
化簡(jiǎn)得$\frac{x^2}{8}+\frac{y^2}{4}=1$.
(Ⅱ)由(Ⅰ),軌跡Ω是以F(2,0)為焦點(diǎn),離心率為$\frac{{\sqrt{2}}}{2}$的橢圓,如圖,連接OM、ON,
設(shè)直線MN方程為x=my+2,點(diǎn)M(x1,y1),N(x2,y2),
聯(lián)立$\left\{\begin{array}{l}x=my+2\\ \frac{x^2}{8}+\frac{y^2}{4}=1\end{array}\right.$消去x,得(m2+2)y2+4my-4=0,
則${y_1}+{y_1}=-\frac{4m}{{{m^2}+2}}$,${y_1}{y_1}=-\frac{4}{{{m^2}+2}}$,
∴$|{y_1}-{y_2}|=\sqrt{{{({y_1}+{y_2})}^2}-4{y_1}{y_2}}=\sqrt{{{(-\frac{4m}{{{m^2}+2}})}^2}+\frac{16}{{{m^2}+2}}}=\frac{{4\sqrt{2}•\sqrt{{m^2}+1}}}{{{m^2}+2}}$,
由于M,N均在y軸右側(cè),則x1>0,x2>0,且0≤|m|<1,
則S=S△OAM+S△OBN+S△OMN=$\frac{1}{2}×2({x_1}+{x_2})+\frac{1}{2}×2|{y_1}-{y_2}|$
=m(y1+y2)+4+|y1-y2|=$-\frac{{4{m^2}}}{{{m^2}+2}}+4+\frac{{4\sqrt{2}•\sqrt{{m^2}+1}}}{{{m^2}+2}}$=$\frac{{4\sqrt{2}•\sqrt{{m^2}+1}+8}}{{{m^2}+2}}$,
方法一、$S'=\frac{{-4\sqrt{2}{t^2}-16t+4\sqrt{2}}}{{{{({t^2}+1)}^2}}}$=$\frac{{-4\sqrt{2}({t^2}+2\sqrt{2}t-1)}}{{{{({t^2}+1)}^2}}}<0$,
故面積函數(shù)$S=\frac{{4\sqrt{2}•t+8}}{{{t^2}+1}}$在單調(diào)遞減,所以$S∈(\frac{16}{3},2\sqrt{2}+4]$,
所以面積S的取值范圍是$(\frac{16}{3},2\sqrt{2}+4]$.
方法二、$S=\frac{{4\sqrt{2}(t+\sqrt{2})}}{{{{(t+\sqrt{2})}^2}-2\sqrt{2}t-1}}=\frac{{4\sqrt{2}(t+\sqrt{2})}}{{{{(t+\sqrt{2})}^2}-2\sqrt{2}(t+\sqrt{2})+3}}$=$\frac{{4\sqrt{2}}}{{(t+\sqrt{2})+\frac{3}{{t+\sqrt{2}}}-2\sqrt{2}}}$,
∵$1≤t<\sqrt{2}$,則$(t+\sqrt{2})+\frac{3}{{t+\sqrt{2}}}∈[4\sqrt{2}-2,\frac{{11\sqrt{2}}}{4})$,
∴$(t+\sqrt{2})+\frac{3}{{t+\sqrt{2}}}-2\sqrt{2}∈[2\sqrt{2}-2,\frac{{3\sqrt{2}}}{4})$,
則$\frac{{4\sqrt{2}}}{{(t+\sqrt{2})+\frac{3}{{t+\sqrt{2}}}-2\sqrt{2}}}∈(\frac{16}{3},2\sqrt{2}+4]$,即$S∈(\frac{16}{3},2\sqrt{2}+4]$,
∴面積S的取值范圍是$(\frac{16}{3},2\sqrt{2}+4]$.
點(diǎn)評(píng) 本題考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問題轉(zhuǎn)化為方程聯(lián)立可得根與系數(shù)的關(guān)系、弦長(zhǎng)公式、三角形的面積計(jì)算公式、利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、基本不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{139}{234}$ | B. | $\frac{134}{198}$ | C. | $\frac{175}{264}$ | D. | $\frac{28}{93}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com