7.已知△ABC的三內(nèi)角A,B,C的對邊分別為a,b,c,且b2=ac,a+c=$\sqrt{21}$,$\frac{1}{tanA}$+$\frac{1}{tanC}$=$\frac{5}{4}$.
(1)求cosB;
(2)求△ABC的面積.

分析 (1)通過cosB求出sinB,利用正弦定理得到sin2B=sinAsinC.通過切化弦,兩角和的正弦函數(shù)化簡,可得sinB,利用sinB即可求cosB;
(2)利用余弦定理,結(jié)合條件求出ac,即可求△ABC的面積.

解答 解:(1)∵b2=ac,
∴根據(jù)正弦定理可得sin2B=sinAsinC.
∴$\frac{1}{tanA}$+$\frac{1}{tanC}$=$\frac{cosA}{sinA}+\frac{cosC}{sinC}$=$\frac{sin(A+C)}{sinAsinC}$=$\frac{sinB}{si{n}^{2}B}$=$\frac{1}{sinB}$=$\frac{5}{4}$,
∴sinB=$\frac{4}{5}$,
∴cosB=$\frac{3}{5}$;
(2)b2=ac=a2+c2-2ac×$\frac{3}{5}$,
∴a2+c2=$\frac{11}{5}$ac,
∵a+c=$\sqrt{21}$,
∴ac=5
∴△ABC的面積S=$\frac{1}{2}$acsinB=$\frac{1}{2}×5×\frac{4}{5}$=2.

點評 本題是中檔題,考查三角函數(shù)的化簡求值,兩角和與正弦定理的應(yīng)用,考查三角形面積的計算,考查計算能力,轉(zhuǎn)化思想的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知a>0,b>0,直線3x-4y=0是雙曲線S:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1的一條漸近線,雙曲線S的離心率為e,則$\frac{3e+{a}^{2}}$的最小值為(  )
A.$\frac{3\sqrt{5}}{2}$B.$\frac{7\sqrt{5}}{2}$C.$\frac{11\sqrt{5}}{3}$D.$\frac{4\sqrt{15}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知三棱錐P-ABC的頂點P在平面ABC內(nèi)的射影為點H,側(cè)棱PA=PB=PC,點O為三棱錐P-ABC的外接球O的球心,AB=8,AC=6,已知$\overrightarrow{AO}=λ\overrightarrow{AB}+μ\overrightarrow{AC}+\frac{1}{1+\sqrt{5}}\overrightarrow{HP}$,且μ+2λ=1,則球O的表面積為81π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.不同字母表示不同的數(shù)字,關(guān)于下面四進制的加法運算,描述正確的有(  )
A.字母A的值是2B.字母B的值是3C.字母C的值是2D.字母D的值是0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=xlnx-x+$\frac{1}{2}$x2-$\frac{1}{3}$ax3,f(x)為函數(shù)f(x)的導(dǎo)函數(shù).
(l)若F(x)=f(x)+b,函數(shù)F(x)在x=1處的切線方程為2x+y-1=0,求a、b的值;
(2)若f′(x)≤-x+ax恒成立,求實數(shù)a的取值范圍;
(3)若曲線y=f(x)上存在兩條傾斜角為銳角且互相平行的切線,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在空間直角坐標(biāo)系O-xyz中,四面體ABCD的頂點坐標(biāo)分別是(1,0,1),(1,1,0),(0,1,1)(0,0,0),則該四面體的正視圖的面積不可能為( 。
A.$\frac{7}{8}$B.$\frac{{\sqrt{15}}}{4}$C.$\frac{{\sqrt{3}}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知雙曲線的一個焦點與拋物線x2=24y的焦點重合,其一條漸近線的傾斜角為30℃,則該雙曲線的標(biāo)準(zhǔn)方程為( 。
A.$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{27}=1$B.$\frac{{y}^{2}}{9}-\frac{{x}^{2}}{27}=1$C.$\frac{{y}^{2}}{12}-\frac{{x}^{2}}{24}=1$D.$\frac{{y}^{2}}{24}-\frac{{x}^{2}}{12}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知動點P到定點F(2,0)的距離和它到定直線x=4的距離的比值為$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求動點P的軌跡Ω的方程;
(Ⅱ)若過點F的直線與點P的軌跡Ω相交于M,N兩點(M,N均在y軸右側(cè)),點A(0,2)、B(0,-2),設(shè)A,B,M,N四點構(gòu)成的四邊形的面積為S,求S的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,網(wǎng)格紙中的小正方形的邊長為1,圖中組線畫出的是一個幾何體的三視圖,則這個幾何體的表面積為( 。
A.$\frac{1}{2}$($\sqrt{22}+3\sqrt{2}+4$)B.$\frac{1}{2}$($\sqrt{22}+3\sqrt{2}+8$)C.$\frac{1}{2}$($\sqrt{22}+\sqrt{2}+8$)D.$\frac{1}{2}$($\sqrt{22}+2\sqrt{2}+8$)

查看答案和解析>>

同步練習(xí)冊答案