分析 (1)通過cosB求出sinB,利用正弦定理得到sin2B=sinAsinC.通過切化弦,兩角和的正弦函數(shù)化簡,可得sinB,利用sinB即可求cosB;
(2)利用余弦定理,結(jié)合條件求出ac,即可求△ABC的面積.
解答 解:(1)∵b2=ac,
∴根據(jù)正弦定理可得sin2B=sinAsinC.
∴$\frac{1}{tanA}$+$\frac{1}{tanC}$=$\frac{cosA}{sinA}+\frac{cosC}{sinC}$=$\frac{sin(A+C)}{sinAsinC}$=$\frac{sinB}{si{n}^{2}B}$=$\frac{1}{sinB}$=$\frac{5}{4}$,
∴sinB=$\frac{4}{5}$,
∴cosB=$\frac{3}{5}$;
(2)b2=ac=a2+c2-2ac×$\frac{3}{5}$,
∴a2+c2=$\frac{11}{5}$ac,
∵a+c=$\sqrt{21}$,
∴ac=5
∴△ABC的面積S=$\frac{1}{2}$acsinB=$\frac{1}{2}×5×\frac{4}{5}$=2.
點評 本題是中檔題,考查三角函數(shù)的化簡求值,兩角和與正弦定理的應(yīng)用,考查三角形面積的計算,考查計算能力,轉(zhuǎn)化思想的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3\sqrt{5}}{2}$ | B. | $\frac{7\sqrt{5}}{2}$ | C. | $\frac{11\sqrt{5}}{3}$ | D. | $\frac{4\sqrt{15}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 字母A的值是2 | B. | 字母B的值是3 | C. | 字母C的值是2 | D. | 字母D的值是0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{8}$ | B. | $\frac{{\sqrt{15}}}{4}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{9}-\frac{{y}^{2}}{27}=1$ | B. | $\frac{{y}^{2}}{9}-\frac{{x}^{2}}{27}=1$ | C. | $\frac{{y}^{2}}{12}-\frac{{x}^{2}}{24}=1$ | D. | $\frac{{y}^{2}}{24}-\frac{{x}^{2}}{12}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$($\sqrt{22}+3\sqrt{2}+4$) | B. | $\frac{1}{2}$($\sqrt{22}+3\sqrt{2}+8$) | C. | $\frac{1}{2}$($\sqrt{22}+\sqrt{2}+8$) | D. | $\frac{1}{2}$($\sqrt{22}+2\sqrt{2}+8$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com