用數(shù)學(xué)歸納法證明不等式“
1
n+1
+
1
n+2
+…+
1
2n
13
24
(n>2)”時(shí)的過(guò)程中,由n=k到n=k+1時(shí),不等式的左邊( 。
A.增加了一項(xiàng)
1
2(k+1)
B.增加了兩項(xiàng)
1
2k+1
+
1
2(k+1)
C.增加了兩項(xiàng)
1
2k+1
+
1
2(k+1)
,又減少了一項(xiàng)
1
k+1
D.增加了一項(xiàng)
1
2(k+1)
,又減少了一項(xiàng)
1
k+1
n=k時(shí),左邊=
1
k+1
+
1
k+2
++
1
k+k
,
n=k時(shí),左邊=
1
(k+1)+1
+
1
(k+1)+2
++
1
(k+1)+(k+1)

=(
1
k+1
+
1
k+2
++
1
k+k
)-
1
k+1
+
1
2k+1
+
1
2k+2

故選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明不等式:
1
n
+
1
n+1
+
1
n+2
+…+
1
n2
>1(n∈N*且n>1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(n)=1+
1
2
+
1
3
+…+
1
n
 (n∈N*),用數(shù)學(xué)歸納法證明不等式f(2n)>
n
2
時(shí),f(2k+1)比f(wàn)(2k)多的項(xiàng)數(shù)是
2k
2k

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明不等式
1
n+1
+
1
n+2
+…+
1
n+n
13
24
的過(guò)程中,由“k推導(dǎo)k+1”時(shí),不等式的左邊增加了( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明不等式1+
1
2
+
1
4
+…+
1
2n-1
127
64
(n∈N*)成立,其初始值至少應(yīng)取
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用數(shù)學(xué)歸納法證明不等式2n>n2時(shí),第一步需要驗(yàn)證n0=( 。⿻r(shí),不等式成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案