19.設(shè)滿足y≥|x-a|的點(diǎn)(x,y)的集合為A,滿足y≤-|x|+b的點(diǎn)(x,y)的集合為B,其中a、b是正數(shù),且A∩B≠∅.
(1)寫出a,b之間有什么關(guān)系?
(2)求A∩B所表示的圖形的面積S.

分析 (1)在同一坐標(biāo)系內(nèi)畫出y≥|x-a|、y≤-|x|+b所表示的平面區(qū)域,數(shù)形結(jié)合可得使A∩B≠∅的a,b之間的關(guān)系;
(2)由(1)知,A∩B所表示的圖形為矩形ACBD,求出矩形面積即可.

解答 解:(1)不等式y(tǒng)≥|x-a|可化為$\left\{\begin{array}{l}{x-y-a≤0}\\{x≥a}\end{array}\right.$或$\left\{\begin{array}{l}{x+y-a≥0}\\{x<a}\end{array}\right.$,畫出它所表示的平面區(qū)域如圖所示,
不等式y(tǒng)≤-|x|+b可化為$\left\{\begin{array}{l}{x-y-b≤0}\\{x≥0}\end{array}\right.$或$\left\{\begin{array}{l}{x-y+b≥0}\\{x<0}\end{array}\right.$,
將其表示的平面區(qū)域與A表示的平面區(qū)域畫在同一坐標(biāo)系中,
如圖所示,要使A∩B≠∅,只要b≥a;
(2)由(1)知,A∩B所表示的圖形為矩形ACBD,
BE=b-a,在Rt△BDE中,∠DBE=45°,
∴BD=$\frac{\sqrt{2}}{2}(b-a)$,
又$AD=AE+DE=\sqrt{2}a+\frac{\sqrt{2}}{2}(b-a)=\frac{\sqrt{2}}{2}(b+a)$,
∴矩形面積S=$BD•AD=\frac{1}{2}(^{2}-{a}^{2})$.

點(diǎn)評(píng) 本題考查簡(jiǎn)單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,正確作出圖形是解答該題的關(guān)鍵,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=$\frac{1-{2}^{x}}{2+{2}^{x+1}}$,證明:函數(shù)f(x)為R上的減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.函數(shù)f(x)在[a,b]上是增函數(shù),對(duì)于任意的x1,x2∈[a,b](x1≠x2),下列結(jié)論中不正確的是( 。
A.$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}>0$B.(x1-x2)[f(x1)-f(x2)]>0
C.f(a)<f(x1)<f(x2)<f(b)D.$\frac{{x}_{1}-{x}_{2}}{f({x}_{1})-f({x}_{2})}>0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若點(diǎn)P是函數(shù)f(x)=x2-lnx上任意一點(diǎn),則點(diǎn)P到直線x-y-2=0的最小距離為( 。
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,牡丹江市某天從6時(shí)到14時(shí)的溫度變化曲線近似滿足函數(shù)y=Asin(ωx+φ)+b(A>0,ω>0,|φ<π|).
(1)求這段時(shí)間最大溫差;
(2)求這段曲線的函數(shù)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.集合A=[1,5],集合B={x∈R||x+3|+|x-2|≤α+2},且A⊆B,則實(shí)數(shù)α取值范圍是[9,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.?dāng)?shù)列{an}為等差數(shù)列,a10=33,a2=1,Sn為數(shù)列{an}的前n項(xiàng)和,則S20-2S10等于( 。
A.40B.200C.400D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知tanα=2,求$\frac{2sinα-5cosα}{4sinα-7cosα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.方程x2-$\frac{3}{2}$x=k在(-1,1)上有實(shí)根,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案