14.已知向量$\overrightarrow{m}$=($\sqrt{3}$x,x2),$\overrightarrow{n}$=($\sqrt{3}$,-$\frac{1}{2}$),當(dāng)x∈[0,4]時,函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的值域?yàn)閇0,$\frac{9}{2}$]..

分析 首先由平面向量的數(shù)量積求出函數(shù)解析式,然后利用二次函數(shù)求值域.

解答 解:因?yàn)橄蛄?\overrightarrow{m}$=($\sqrt{3}$x,x2),$\overrightarrow{n}$=($\sqrt{3}$,-$\frac{1}{2}$),當(dāng)x∈[0,4]時,函數(shù)f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$=3x-$\frac{1}{2}$x2=-$\frac{1}{2}$(x-3)2+$\frac{9}{2}$,
屬于f(x)的最大值為$\frac{9}{2}$,最小值為0;
所以值域?yàn)閇0,$\frac{9}{2}$].
故答案為:[0,$\frac{9}{2}$].

點(diǎn)評 本題考查了平面向量的數(shù)量積的坐標(biāo)運(yùn)算以及二次函數(shù)求值域;比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.拋物線的焦點(diǎn)是雙曲線 16x2-9y2=144的左頂點(diǎn);求拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.直線l和兩條直線l1:x-3y+10=0,及l(fā)2:2x+y-8=0都相交,且這兩個交點(diǎn)所成的線段的中點(diǎn)P(0,1),則直線l的方程是2x+3y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.用五點(diǎn)作圖法作出函數(shù)y=cos(2x-$\frac{π}{3}$),x∈[0,π]的圖象,并寫出其單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,棱長為2的正方體ABCD-A1B1C1D1中,點(diǎn)E,F(xiàn)在線段A1B1上運(yùn)動,且|EF|=1,點(diǎn)G在線段AD上運(yùn)動,H是線段CD的中點(diǎn),設(shè)DG=x(0<x<2),則三棱錐G-EFH的體積V(x)的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,并且對于所有的正整數(shù)n,an與1的等差中項(xiàng)等于Sn與1的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的通項(xiàng)公式bn=ln(1+$\frac{1}{{a}_{n}}$),記Tn是{bn}的前n項(xiàng)和,試比較Tn與$\frac{1}{2}$lnan+1的大小并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在空間中,已知平面α過點(diǎn)(3,0,0)和點(diǎn)(0,4,0)及z軸上一點(diǎn)(0,0,a)(a>0),如果平面α與平面xOy上的夾角為45°,則a=$\frac{12}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=3,$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,那么($\overrightarrow{a}$+$\overrightarrow$)•(2$\overrightarrow{a}$-$\overrightarrow$)=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)={cos^2}(x+\frac{π}{12})$,g(x)=1+$\frac{1}{2}$sin2x,h(x)=f(x)+g(x).
(1)設(shè)x=x0是函數(shù)y=f(x)圖象的一條對稱軸,求g(2x0)的值;
(2)求函數(shù)h(x)的單調(diào)增區(qū)間;
(3)p(x)=h(x)-t在x∈$[0,\frac{π}{2}]$上有1個零點(diǎn),求t的取值范圍?

查看答案和解析>>

同步練習(xí)冊答案