橢圓c:(a>b>0)的離心率為,過其右焦點F與長軸垂直的弦長為1,
(1)求橢圓C的方程;
(2)設橢圓C的左右頂點分別為A,B,點P是直線x=1上的動點,直線PA與橢圓的另一個交點為M,直線PB與橢圓的另一個交點為N,求證:直線MN經過一定點.
科目:高中數學 來源: 題型:解答題
已知函數f(x)的圖象與函數h(x)=x++2的圖象關于點A(0,1)對稱.
(1)求函數f(x)的解析式;
(2)若g(x)=f(x)+,g(x)在區(qū)間(0,2]上的值不小于6,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設關于x函數 其中0
將f(x)的最小值m表示成a的函數m=g(a);
是否存在實數a,使f(x)>0在上恒成立?
是否存在實數a,使函數f(x) 在上單調遞增?若存在,寫出所有的a組成的集合;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點為圓心的兩個同心圓弧、弧以及兩條線段和圍成的封閉圖形.花壇設計周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為米(),圓心角為弧度.
(1)求關于的函數關系式;
(2)在對花壇的邊緣進行裝飾時,已知兩條線段的裝飾費用為4元/米,兩條弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,當為何值時,取得最大值?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
學校操場邊有一條小溝,溝沿是兩條長150米的平行線段,溝寬為2米,,與溝沿垂直的平面與溝的交線是一段拋物線,拋物線的頂點為,對稱軸與地面垂直,溝深2米,溝中水深1米.
(1)求水面寬;
(2)如圖1所示形狀的幾何體稱為柱體,已知柱體的體積為底面積乘以高,求溝中的水有多少立方米?
(3)現在學校要把這條水溝改挖(不準填土)成截面為等腰梯形的溝,使溝的底面與地面平行,溝深不變,兩腰分別與拋物線相切(如圖2),問改挖后的溝底寬為多少米時,所挖的土最少?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
對于函數,若在定義域存在實數,滿足,則稱為“局部奇函數”.
(1)已知二次函數,試判斷是否為“局部奇函數”?并說明理由;
(2)設是定義在上的“局部奇函數”,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
甲廠以x千克/小時的速度運輸生產某種產品(生產條件要求1≤x≤10),每小時可獲得利潤是100(5x+1-)元.
(1)要使生產該產品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產900千克該產品獲得的利潤最大,問:甲廠應該選取何種生產速度?并求最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=mx+3,g(x)=x2+2x+m.
(1)求證:函數f(x)-g(x)必有零點;
(2)設函數G(x)=f(x)-g(x)-1,若|G(x)|在[-1,0]上是減函數,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com