【題目】已知過原點(diǎn)的動(dòng)直線l與圓相交于不同的兩點(diǎn)A,B.
(1)求線段AB的中點(diǎn)M的軌跡C的方程;
(2)是否存在實(shí)數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個(gè)交點(diǎn)?若存在,求出k的取值范圍;若不存在,說明理由.
【答案】(1)(2)
【解析】試題分析:(Ⅰ)利用圓的幾何性質(zhì),總有,根據(jù)斜率公式得到軌跡方程;(Ⅱ)做出曲線
的圖象,
恒過點(diǎn)
,利用數(shù)形結(jié)合,可知斜率的變化范圍.
試題解析:(Ⅰ)設(shè),則
,
當(dāng)直線的斜率不為0時(shí),由
得
,即
當(dāng)直線的斜率為0時(shí),
也適合上述方程
∴ 線段的中點(diǎn)
的軌跡的方程為
;
(Ⅱ)由(Ⅰ)知點(diǎn)的軌跡是以
為圓心
為半徑的部分圓弧
(如下圖所示,不包括兩端點(diǎn)),且
,
,又直線
:
過定點(diǎn)
,當(dāng)直線
與圓
相切時(shí),由
得
,又
,結(jié)合上圖可知當(dāng)
時(shí),直線
:
曲線
只有一個(gè)交點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)已知圓,圓
,動(dòng)圓
與圓
外切并且與圓
內(nèi)切,求動(dòng)圓圓心
的軌跡方程;
(2) 求與雙曲線共漸近線,且過點(diǎn)
的雙曲線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,
,
,
平面ABC.
若
,求直線
與平面
所成的角的大小;
在
的條件下,求二面角
的大小;
若
,
平面
,G為垂足,令
其中p、q、
,求p、q、r的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和Sn滿足2Sn=3an﹣1,其中n∈N* .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)anbn= ,求數(shù)列{bn}的前n項(xiàng)和為Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為定義域
上的奇函數(shù),且在
上是單調(diào)遞增函數(shù),函數(shù)
,數(shù)列
為等差數(shù)列,
,且公差不為0,若
,則
( )
A. 45 B. 15 C. 10 D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正三棱柱的所有棱長都相等,
分別為
的中點(diǎn).現(xiàn)有下列四個(gè)結(jié)論:
:
;
:
;
:
平面
;
:異面直線
與
所成角的余弦值為
.
其中正確的結(jié)論是
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有兩臺不同機(jī)器A和B生產(chǎn)同一種產(chǎn)品各10萬件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機(jī)抽取20件,進(jìn)行品質(zhì)鑒定,鑒定成績的莖葉圖如圖所示:
該產(chǎn)品的質(zhì)量評價(jià)標(biāo)準(zhǔn)規(guī)定:鑒定成績達(dá)到的產(chǎn)品,質(zhì)量等級為優(yōu)秀;鑒定成績達(dá)到
的產(chǎn)品,質(zhì)量等級為良好;鑒定成績達(dá)到
的產(chǎn)品,質(zhì)量等級為合格
將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.
Ⅰ
從等級為優(yōu)秀的樣本中隨機(jī)抽取兩件,記X為來自B機(jī)器生產(chǎn)的產(chǎn)品數(shù)量,寫出X的分布列,并求X的數(shù)學(xué)期望;
Ⅱ
完成下列
列聯(lián)表,以產(chǎn)品等級是否達(dá)到良好以上
含良好
為判斷依據(jù),判斷能不能在誤差不超過
的情況下,認(rèn)為B機(jī)器生產(chǎn)的產(chǎn)品比A機(jī)器生產(chǎn)的產(chǎn)品好;
A生產(chǎn)的產(chǎn)品 | B生產(chǎn)的產(chǎn)品 | 合計(jì) | |
良好以上 | |||
合格 | |||
合計(jì) |
已知優(yōu)秀等級產(chǎn)品的利潤為12元
件,良好等級產(chǎn)品的利潤為10元
件,合格等級產(chǎn)品的利潤為5元
件,A機(jī)器每生產(chǎn)10萬件的成本為20萬元,B機(jī)器每生產(chǎn)10萬件的成本為30萬元;該工廠決定:按樣本數(shù)據(jù)測算,兩種機(jī)器分別生產(chǎn)10萬件產(chǎn)品,若收益之差達(dá)到5萬元以上,則淘汰收益低的機(jī)器,若收益之差不超過5萬元,則仍然保留原來的兩臺機(jī)器
你認(rèn)為該工廠會仍然保留原來的兩臺機(jī)器嗎?
附:獨(dú)立性檢驗(yàn)計(jì)算公式:
.
臨界值表:
k |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等比數(shù)列的前
項(xiàng)和為
,
,且
,
,
成等差數(shù)列,數(shù)列
滿足
.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),數(shù)列
的前
項(xiàng)和為
,若對任意
,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+bx(a,b∈R)在點(diǎn)(1,f(1))處的切線方程為x﹣2y﹣2=0.
(1)求a,b的值;
(2)當(dāng)x>1時(shí),f(x)+ <0恒成立,求實(shí)數(shù)k的取值范圍;
(3)證明:當(dāng)n∈N* , 且n≥2時(shí), +
+…+
>
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com