【題目】某工廠有兩臺不同機器A和B生產(chǎn)同一種產(chǎn)品各10萬件,現(xiàn)從各自生產(chǎn)的產(chǎn)品中分別隨機抽取20件,進行品質(zhì)鑒定,鑒定成績的莖葉圖如圖所示:
該產(chǎn)品的質(zhì)量評價標(biāo)準(zhǔn)規(guī)定:鑒定成績達到的產(chǎn)品,質(zhì)量等級為優(yōu)秀;鑒定成績達到的產(chǎn)品,質(zhì)量等級為良好;鑒定成績達到的產(chǎn)品,質(zhì)量等級為合格將這組數(shù)據(jù)的頻率視為整批產(chǎn)品的概率.
Ⅰ從等級為優(yōu)秀的樣本中隨機抽取兩件,記X為來自B機器生產(chǎn)的產(chǎn)品數(shù)量,寫出X的分布列,并求X的數(shù)學(xué)期望;
Ⅱ完成下列列聯(lián)表,以產(chǎn)品等級是否達到良好以上含良好為判斷依據(jù),判斷能不能在誤差不超過的情況下,認(rèn)為B機器生產(chǎn)的產(chǎn)品比A機器生產(chǎn)的產(chǎn)品好;
A生產(chǎn)的產(chǎn)品 | B生產(chǎn)的產(chǎn)品 | 合計 | |
良好以上含良好 | |||
合格 | |||
合計 |
已知優(yōu)秀等級產(chǎn)品的利潤為12元件,良好等級產(chǎn)品的利潤為10元件,合格等級產(chǎn)品的利潤為5元件,A機器每生產(chǎn)10萬件的成本為20萬元,B機器每生產(chǎn)10萬件的成本為30萬元;該工廠決定:按樣本數(shù)據(jù)測算,兩種機器分別生產(chǎn)10萬件產(chǎn)品,若收益之差達到5萬元以上,則淘汰收益低的機器,若收益之差不超過5萬元,則仍然保留原來的兩臺機器你認(rèn)為該工廠會仍然保留原來的兩臺機器嗎?
附:獨立性檢驗計算公式:.
臨界值表:
k |
【答案】(I)詳見解析;(II)詳見解析;(III)不會.
【解析】
Ⅰ從等級為優(yōu)秀的樣本中隨機抽取兩件,記X為來自B機器生產(chǎn)的產(chǎn)品數(shù)量,求出X的可能值,求出個;求出概率寫出X的分布列,并然后求X的數(shù)學(xué)期望;
Ⅱ完成下列列聯(lián)表,求出,然后判斷以產(chǎn)品等級是否達到良好以上含良好為判斷依據(jù),判斷能不能在誤差不超過的情況下,認(rèn)為B機器生產(chǎn)的產(chǎn)品比A機器生產(chǎn)的產(chǎn)品好;
求出兩種機器的利潤,然后比較即可.
Ⅰ從莖葉圖可以知道,樣本中優(yōu)秀的產(chǎn)品有2個來自A機器,3個來自B機器;
所以X的可能取值為0,1,
,,
X的分布列為:
X | 0 | 1 | 2 |
P |
所以
Ⅱ由已知可得,列聯(lián)表為
A生產(chǎn)的產(chǎn)品 | B生產(chǎn)的產(chǎn)品 | 合計 | |
良好以上 | 6 | 12 | 18 |
合格 | 14 | 8 | 22 |
合計 | 20 | 20 | 40 |
,
所以不能在誤差不超過的情況下,認(rèn)為產(chǎn)品等級是否達到良好以上與生產(chǎn)產(chǎn)品的機器有關(guān)
機器每生產(chǎn)10萬件的利潤為萬元,
B機器每生產(chǎn)10萬件的利潤為萬元,
所以,
所以該工廠不會仍然保留原來的兩臺機器,應(yīng)該會賣掉A機器,同時購買一臺B機器
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校的課外綜合實踐研究小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到
市氣象觀測站與市醫(yī)院抄錄了1至6月份每月10號的晝夜溫差情況與因患感冒而就診的人數(shù),得到
如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 (°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù) (個) | 22 | 25 | 29 | 26 | 16 | 12 |
該綜合實踐研究小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.
(1)若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程.
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考數(shù)據(jù):
.
參考公式:回歸直線,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知過原點的動直線l與圓相交于不同的兩點A,B.
(1)求線段AB的中點M的軌跡C的方程;
(2)是否存在實數(shù)k,使得直線L:y=k(x﹣4)與曲線C只有一個交點?若存在,求出k的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校100名學(xué)生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60][60,70][70,80][80,90][90,100].
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這100名學(xué)生語文成績的平均分;
(3)若這100名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)(x)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如下表所示,求數(shù)學(xué)成績在[50,90)之外的人數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,BC= ,AB=AC=AA1=1,D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA1 .
(1)求證:CD=C1D;
(2)求二面角A1﹣B1D﹣P的平面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣9x,函數(shù)g(x)=3x2+a.
(1)已知直線l是曲線y=f(x)在點(0,f(0))處的切線,且l與曲線y=g(x)相切,求a的值;
(2)若方程f(x)=g(x)有三個不同實數(shù)解,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com