12.某幾何體的三視圖如圖所示,則它的體積為$\frac{15}{2}$.

分析 由三視圖可知:該幾何體是由一個三棱柱截取一個三棱錐剩下的一個幾何體.利用體積計算公式即可得出.

解答 解:由三視圖可知:該幾何體是由一個三棱柱截取一個三棱錐剩下的一個幾何體.
∴該幾何體的體積V=$\frac{1}{2}×3×2×$3-$\frac{1}{3}×\frac{1}{2}×3×2×\frac{3}{2}$=$\frac{15}{2}$.
故答案為:$\frac{15}{2}$.

點評 本題考查了三視圖的有關(guān)計算、三棱錐與三棱柱的體積計算公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.一個幾何體的三視圖如圖所示,其中,俯視圖是半徑為2、圓心角為$\frac{π}{2}$的扇形.該幾何體的表面積是( 。
A.3π+12B.C.5π+12D.8π+12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1+\sqrt{2}cos(2x-\frac{π}{4})}{cosx}$
(1)求函數(shù)f(x)的定義域;
(2)求函數(shù)f(x)在區(qū)間[-$\frac{π}{4}$,$\frac{π}{2}$)上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)y=x$\sqrt{1-\frac{1}{2}{x}^{2}}$的最大值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若正實數(shù)x,y,z滿足x2+y2=9,x2+z2+xz=16,y2+z2+$\sqrt{3}$yz=25,則2xy+$\sqrt{3}$xz+yz=18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則此幾何體的體積為( 。
A.$\frac{\sqrt{3}}{6}$πB.$\frac{\sqrt{3}}{3}$πC.$\sqrt{3}$πD.π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知定義域為R的函f(x)=$\frac{-{2}^{x}+a}{{2}^{x}+1}$是奇函敷.
(1)求a的值;
(2)判斷并證明函數(shù)f(x)的單調(diào)性;
(3)設m為常數(shù),且m>0,若對任意的t∈[1,2],不等式f(-m+2t)+f(-mt2+1)≥0恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.函數(shù)y=-x2+4x-7在區(qū)間(-1,3)上是( 。
A.增函數(shù)B.減函數(shù)
C.先是增函數(shù)后是減函數(shù)D.先是減函數(shù)后是函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知△ABC的頂點B、C在橢圓$\frac{x^2}{4}$+y2=1上,頂點A是橢圓的一個焦點,且橢圓的另外一個焦點在BC邊上,則△ABC的周長是8.

查看答案和解析>>

同步練習冊答案