19.已知定義在R上的偶函數(shù)f(x)在[0,+∞)上遞減,且f(1)=0,則不等式f(log4x)+f(log$\frac{1}{4}$x)≥0的解集為[$\frac{1}{4}$,4].

分析 根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)進(jìn)行化簡(jiǎn),結(jié)合函數(shù)奇偶性和單調(diào)性的關(guān)系將不等式進(jìn)行轉(zhuǎn)化求解即可.

解答 解:∵定義在R上的偶函數(shù)f(x)在[0,+∞)上遞減,且f(1)=0,
∴不等式f(log4x)+f(log$\frac{1}{4}$x)≥0等價(jià)為不等式f(log4x)+f(-log4x)≥0
即2f(log4x)≥0,則f(|log4x|)≥f(1),
即|log4x|≤1,即-1≤log4x≤1,
則-$\frac{1}{4}$≤x≤4,
即不等式的解集為[$\frac{1}{4}$,4],
故答案為:[$\frac{1}{4}$,4].

點(diǎn)評(píng) 本題主要考查不等式的求解,根據(jù)函數(shù)奇偶性和單調(diào)性的性質(zhì)將不等式進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)$f(x)=ln({x-2})-\frac{x^2}{2a}$(a為常數(shù),a≠0).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)在點(diǎn)(3,f(3))的切線方程
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)若f(x)在x0處取得極值,且${x_0}∉[{e+2,{e^3}+2}]$,而f(x)≥0在[e+2,e3+2]上恒成立,求實(shí)數(shù)a的取值范圍.(其中e為自然對(duì)數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此進(jìn)行了5次試驗(yàn).根據(jù)收集到的數(shù)據(jù)(如表):
零件數(shù)x(個(gè))1020304050
加工時(shí)間y(分鐘)6268758189
由最小二乘法求得回歸方程 $\widehat{y}$=0.67x+a,則a的值為54.9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.某名學(xué)生默寫英語(yǔ)單詞“bookkeeper(會(huì)計(jì))”,他記得這個(gè)單詞是由3個(gè)“e”,2個(gè)“o”,2個(gè)“k”,b,p,r各一個(gè)組成,2個(gè)“o”相鄰,3個(gè)“e”恰有兩個(gè)相鄰,o,e都不在首位,他按此條件任意寫出一個(gè)字母組合,則他寫對(duì)這個(gè)單詞的概率為(  )
A.$\frac{1}{9600}$B.$\frac{1}{18000}$C.$\frac{1}{4500}$D.$\frac{1}{10800}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知等差數(shù)列{an}滿足a4-a2=4,a3=8.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)數(shù)列{bn}滿足${b_n}={(\sqrt{2})^{a_n}}$,求數(shù)列{bn}的前8項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=logax(a>0且a≠1).
(1)若f(3a+4)≥f(5a),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=$\frac{1}{2}$時(shí),設(shè)g(x)=f(x)-3x+4,判斷g(x)在(1,2)上零點(diǎn)的個(gè)數(shù)并證明:對(duì)任意λ>0,都存在μ>0,使得g(x)<0在x∈(λμ,+∞)上恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.某四棱錐的三視圖如圖所示,其俯視圖為等腰直角三角形,則該四棱錐的體積為(  )
A.$\frac{{\sqrt{2}}}{3}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在${(\sqrt{x}+\frac{a}{x})^6}(a>0)$的展開式中常數(shù)項(xiàng)的系數(shù)是60,則a的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.函數(shù)f(x)=sin(2x+$\frac{π}{3}$)(  )
A.圖象向右平移$\frac{π}{3}$個(gè)單位長(zhǎng)度得到y(tǒng)=sin2x圖象
B.圖象關(guān)于點(diǎn)($\frac{π}{6}$,0)對(duì)稱
C.圖象關(guān)于直線x=-$\frac{π}{12}$對(duì)稱
D.在區(qū)間[-$\frac{5π}{12}$,$\frac{π}{12}$]單調(diào)遞增

查看答案和解析>>

同步練習(xí)冊(cè)答案