函數(shù)y=
1-x2
|x+1|+|x-2|
 
(填奇函數(shù),偶函數(shù),非奇非偶函數(shù),奇函數(shù)又是偶函數(shù))
分析:先求定義域,對(duì)函數(shù)的解析式作適合變形,再看f(x)與f(-x)的關(guān)系.
解答:解:根據(jù)題意:
1-x2≥0
|x+1|+|x-2|≠0

解得:-1≤x≤1
∴f(x)=
1-x2
3

∵f(-x)=f(x)
∴f(x)是偶函數(shù)
故答案為:偶函數(shù)
點(diǎn)評(píng):本題主要考查如何判斷函數(shù)的奇偶性,要先求定義域,看是否關(guān)于原點(diǎn)對(duì)稱,同時(shí),還可借助定義域作等價(jià)變形,再看f(x)與f(-x)的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
1-x2
|x+3|-3
是( 。
A、奇函數(shù)不是偶函數(shù)
B、偶函數(shù)不是奇函數(shù)
C、奇函數(shù)又是偶函數(shù)
D、非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
1
-x2+x+6
的定義域?yàn)?!--BA-->
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下面四個(gè)命題:
①奇函數(shù)的圖象一定過(guò)原點(diǎn);
②函數(shù)y=
1-x2
|x+2|-2
是奇函數(shù);
③奇函數(shù)f(x)在[a,b]上為增函數(shù),則函數(shù)f(x)在[-b,-a]上為減函數(shù);
④定義在R上的函數(shù)y=f(x),則函數(shù)y=f(x-1)與y=f(1-x)的圖象關(guān)于直線x=1對(duì)稱;
其中正確命題的序號(hào)是
②④
②④
(把所有正確命題的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
1-x2
|x+4|+|x-3|
是( 。
A、奇函數(shù)
B、偶函數(shù)
C、非奇非偶函數(shù)
D、既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案