分析 利用等比數(shù)列的通項(xiàng)公式求出公比,從而能求出首項(xiàng),由此能求出an.
解答 解:∵{an}是等比數(shù)列,a2+a5=18,a3+a6=9,
∴$q=\frac{{a}_{3}+{a}_{6}}{{a}_{2}+{a}_{5}}$=$\frac{9}{18}$=$\frac{1}{2}$,
∴$\frac{1}{2}{a}_{1}+\frac{1}{16}{a}_{1}$=18,解得a1=32,
∴an=32×$(\frac{1}{2})^{n-1}$.
點(diǎn)評 本題考查等比數(shù)列等基礎(chǔ)知識,考查數(shù)據(jù)處理能力、運(yùn)算求解能力,考查函數(shù)與方程思想,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若任意向量$\overrightarrow a與\overrightarrow b$共線且$\overrightarrow a$為非零向量,則有唯一一個實(shí)數(shù)λ,使得$\overrightarrow a=λ\overrightarrow b$ | |
B. | 對于任意非零向量$\overrightarrow a與\overrightarrow b$,若$(\overrightarrow a+\overrightarrow b)•(\overrightarrow a-\overrightarrow b)=0$,則$|{\overrightarrow a}|=|{\overrightarrow b}|$ | |
C. | 任意非零向量$\overrightarrow a與\overrightarrow b$滿足$|{\overrightarrow a•\overrightarrow b}|=|{\overrightarrow a}||{\overrightarrow b}|$,則$\overrightarrow a與\overrightarrow b$同向 | |
D. | 若A,B,C三點(diǎn)滿足$\overrightarrow{OA}=\frac{2}{3}\overrightarrow{OB}+\frac{1}{3}\overrightarrow{OC}$,則點(diǎn)A是線段BC的三等分點(diǎn)且離C點(diǎn)較近 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=tanx | B. | y=-x3-3x | C. | y=|sinx| | D. | y=$\frac{1}{x+1}$-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3π}{10}$ | B. | $\frac{3π}{20}$ | C. | $1-\frac{3π}{10}$ | D. | $1-\frac{3π}{20}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2-21-n | B. | 2n-1-1 | C. | 2n-1 | D. | 2-2n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-3,2)\;\;\;\;\;\;\;\sqrt{13}$ | B. | $(3,-2)\;\;\;\;\;\;\;\sqrt{13}$ | C. | (-3,2)4 | D. | (3,-2)4 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com