【題目】已知橢圓經(jīng)過(guò)點(diǎn),且離心率為

(I)求橢圓的方程;

(Ⅱ)過(guò)橢圓的右頂點(diǎn)做相互垂直的兩條直線,,分別交橢圓、異于點(diǎn)),問(wèn)直線是否通過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

【答案】().()答案見(jiàn)解析.

【解析】分析:()由題意計(jì)算可得,在橢圓方程為;

()結(jié)合()的結(jié)論可知,據(jù)此分類討論直線斜率存在和斜率不存在兩種情況可得直線通過(guò)定點(diǎn).

詳解:Ⅰ)由題意,得,解得,

所以橢圓的方程是

Ⅱ)由(Ⅰ)得

當(dāng)直線的斜率不存在時(shí),

直線的方程設(shè)為,

得,,解得(舍去).

當(dāng)直線的斜率存在時(shí),設(shè)直線的方程設(shè)為,設(shè),

聯(lián)立消去

則有,

,

得,

,

,

,

則直線的方程設(shè)為,過(guò)點(diǎn),不在橢圓內(nèi),與題意不符.

,代入到判別式中,判別式恒大于0,則滿足有兩個(gè)交點(diǎn).

則直線的方程設(shè)為,過(guò)點(diǎn)得.

綜上,直線通過(guò)定點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次抽樣調(diào)查中測(cè)得樣本的6組數(shù)據(jù),得到一個(gè)變量關(guān)于的回歸方程模型,其對(duì)應(yīng)的數(shù)值如下表:

2

3

4

5

6

7

(1)請(qǐng)用相關(guān)系數(shù)加以說(shuō)明之間存在線性相關(guān)關(guān)系(當(dāng)時(shí),說(shuō)明之間具有線性相關(guān)關(guān)系);

(2)根據(jù)(1)的判斷結(jié)果,建立關(guān)于的回歸方程并預(yù)測(cè)當(dāng)時(shí),對(duì)應(yīng)的值為多少(精確到).

附參考公式:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:

,相關(guān)系數(shù)公式為:.

參考數(shù)據(jù):

,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)常數(shù)a使方程sinx+ cosx=a在閉區(qū)間[0,2π]上恰有三個(gè)解x1 , x2 , x3 , 則x1+x2+x3=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量,, , ,分別為的三邊所對(duì)的角

(Ⅰ)求角的大小

(Ⅱ)若,成等比數(shù)列,, 求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為評(píng)估設(shè)備M生產(chǎn)某種零件的性能,從設(shè)備M生產(chǎn)零件的流水線上隨機(jī)抽取100件零件最為樣本,測(cè)量其直徑后,整理得到下表:

直徑/mm

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合計(jì)

件數(shù)

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

經(jīng)計(jì)算,樣本的平均值μ=65,標(biāo)準(zhǔn)差=2.2,以頻率值作為概率的估計(jì)值.
(1)為評(píng)判一臺(tái)設(shè)備的性能,從該設(shè)備加工的零件中任意抽取一件,記其直徑為X,并根據(jù)以下不等式進(jìn)行評(píng)判(p表示相應(yīng)事件的頻率):①p(μ﹣σ<X≤μ+σ)≥0.6826.②P(μ﹣σ<X≤μ+2σ)≥0.9544③P(μ﹣3σ<X≤μ+3σ)≥0.9974.評(píng)判規(guī)則為:若同時(shí)滿足上述三個(gè)不等式,則設(shè)備等級(jí)為甲;僅滿足其中兩個(gè),則等級(jí)為乙,若僅滿足其中一個(gè),則等級(jí)為丙;若全部不滿足,則等級(jí)為。嚺袛嘣O(shè)備M的性能等級(jí).
(2)將直徑小于等于μ﹣2σ或直徑大于μ+2σ的零件認(rèn)為是次品
(i)從設(shè)備M的生產(chǎn)流水線上隨意抽取2件零件,計(jì)算其中次品個(gè)數(shù)Y的數(shù)學(xué)期望EY;
(ii)從樣本中隨意抽取2件零件,計(jì)算其中次品個(gè)數(shù)Z的數(shù)學(xué)期望EZ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,則的值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) (, 為自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)的極值;

(2)當(dāng)時(shí),若直線與曲線沒(méi)有公共點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線在點(diǎn)處的切線方程為

(1)若函數(shù)時(shí)有極值,求表達(dá)式;

(2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)fx)=3x

(1)若fx)=8,求x的值;

(2)對(duì)于任意的x∈[0,2],[fx)-3]3x+13-m≥0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案