【題目】正三棱柱ABC﹣A1B1C1底面△ABC的邊長(zhǎng)為3,此三棱柱的外接球的半徑為 ,則異面直線AB1與BC1所成角的余弦值為

【答案】
【解析】解:設(shè)三棱柱外接球的球心為O,球半徑為r, 三棱柱的底面三角形ABC的中心為D,如圖,

∵正三棱柱ABC﹣A1B1C1底面△ABC的邊長(zhǎng)為3,此三棱柱的外接球的半徑為 ,
∴OA= ,AD= = ,
∴OD= =2,∴AA1=4,
以A為原點(diǎn),以過(guò)A在平面ABC中作AC的垂線為x軸,以AC為y軸,AA1為z軸,
建立空間直角坐標(biāo)系,
A(0,0,0),B( ,0),
B1 ,4),C1(0,3,4),
=( , ,4), =(﹣ ,4),
設(shè)異面直線AB1與BC1所成角為θ,
則cosθ= = =
∴異面直線AB1與BC1所成角的余弦值為
所以答案是:
【考點(diǎn)精析】掌握異面直線及其所成的角是解答本題的根本,需要知道異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的頂點(diǎn)在原點(diǎn),過(guò)點(diǎn)A(-4,4)且焦點(diǎn)在x軸.

(1)求拋物線方程;

(2)直線l過(guò)定點(diǎn)B(-1,0)與該拋物線相交所得弦長(zhǎng)為8,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】等差數(shù)列{an}的前n項(xiàng)和為Sn , 已知a2=7,a3為整數(shù),且Sn的最大值為S5
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn= ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知美國(guó)蘋(píng)果公司生產(chǎn)某款iphone手機(jī)的年固定成本為40萬(wàn)美元,每生產(chǎn)1只還需另投入16美元.設(shè)蘋(píng)果公司一年內(nèi)共生產(chǎn)該款iphone手機(jī)x萬(wàn)只并全部銷(xiāo)售完,每萬(wàn)只的銷(xiāo)售收入為R(x)萬(wàn)美元,且R(x)=
(1)寫(xiě)出年利潤(rùn)W(萬(wàn)元)關(guān)于年產(chǎn)量x(萬(wàn)只)的函數(shù)解析式;
(2)當(dāng)年產(chǎn)量為多少萬(wàn)只時(shí),蘋(píng)果公司在該款手機(jī)的生產(chǎn)中所獲得的利潤(rùn)最大?并求出最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓的半徑為2,圓心在軸的正半軸上,且與直線相切.

(1)求圓的方程。

(2)在圓上,是否存在點(diǎn),使得直線與圓相交于不同的兩點(diǎn),且△的面積最大?若存在,求出點(diǎn)的坐標(biāo)及對(duì)應(yīng)的△的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是( 。

A. 2017年第一季度總量和增速由高到低排位均居同一位的省只有1個(gè)

B. 與去年同期相比,2017年第一季度五個(gè)省的總量均實(shí)現(xiàn)了增長(zhǎng)

C. 去年同期河南省的總量不超過(guò)4000億元

D. 2017年第一季度增速由高到低排位第5的是浙江省

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)命題中:①“等邊三角形的三個(gè)內(nèi)角均為60°”的逆命題;

②“若,則方程有實(shí)根”的逆否命題;

③“全等三角形的面積相等”的否命題;

④“若,則”的否命題.

其中真命題的個(gè)數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足 =
(Ⅰ)求角A的大小;
(Ⅱ)若a=2 ,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=2x﹣a,g(x)=x+2.
(1)當(dāng)a=1時(shí),求不等式f(x)+f(﹣x)≤g(x)的解集;
(2)求證: 中至少有一個(gè)不小于

查看答案和解析>>

同步練習(xí)冊(cè)答案