設(shè)變量x,y滿足約束條件
x≥1
x-y≤0
x+y-4≤0
,若目標(biāo)函數(shù)z=ax+y取最大值時(shí)最優(yōu)解不唯一,則a的值為( 。
A、-1B、0C、-1或1D、1
考點(diǎn):簡單線性規(guī)劃
專題:計(jì)算題,作圖題,不等式的解法及應(yīng)用
分析:由題意作出其平面區(qū)域,將z=ax+y化為y=-ax+z,z相當(dāng)于直線y=-ax+z的縱截距,由幾何意義可得.
解答: 解:由題意作出其平面區(qū)域,

將z=ax+y化為y=-ax+z,z相當(dāng)于直線y=-ax+z的縱截距,
則由目標(biāo)函數(shù)z=ax+y取最大值時(shí)最優(yōu)解不唯一知,
y=-ax+z與y=4-x重合,
故a=1;
故選D.
點(diǎn)評(píng):本題考查了簡單線性規(guī)劃,作圖要細(xì)致認(rèn)真,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

導(dǎo)函數(shù)的最大值是原函數(shù)的最小值.
 
(判斷對(duì)錯(cuò))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P是雙曲線
x2
4
-
y2
16
=1
右支上任一點(diǎn),過點(diǎn)P分別作兩條漸近線的垂線,垂足分別為E、F,求|PE|•|PF|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)人以6米/秒的速度去追趕停在交通燈前的汽車,當(dāng)他離汽車25米時(shí)交通燈由紅變綠,汽車開始變速直線行駛(汽車與人前進(jìn)方向相同),汽車在時(shí)間t內(nèi)的路程為s=
1
2
t2米,那么,此人(  )
A、可在7秒內(nèi)追上汽車
B、可在9秒內(nèi)追上汽車
C、不能追上汽車,但其間最近距離為14米
D、不能追上汽車,但其間最近距離為7米

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>b>c>0,則a2+
1
bc
+
1
a(a-b)
+
1
b(a-c)
的最小值為( 。
A、4B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
x+y≥2
x-y≤2
0≤y≤3
則z=2x-y的最小值是(  )
A、5
B、
5
2
C、-5
D、-
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,∠DAC=90°,O為AC的中點(diǎn),PO⊥底面ABCD.
(Ⅰ)求證:AD⊥平面PAC;
(Ⅱ)在線段PB上是否存在一點(diǎn)M,使得OM∥平面PAD?若存在,寫出證明過程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,△O′A′B′為斜二測(cè)畫法做出的△OAB的直觀圖,其中O′A′=A′B′=2則原△OAB的面積是( 。
A、2
2
B、4
C、4
2
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
=(1,1,0),
b
=(-1,0,2),則與
a
+
b
同方向的單位向量是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案