【題目】“嫦娥奔月,舉國歡慶”,據(jù)科學計算,運載“神六”的“長征二號”系列火箭,在點火第一秒鐘通過的路程為2 km,以后每秒鐘通過的路程都增加2 km,在達到離地面210 km的高度時,火箭與飛船分離,則這一過程大約需要的時間是______秒.
【答案】14
【解析】
設(shè)出每一秒鐘的路程為一數(shù)列,由題意可知此數(shù)列為等差數(shù)列,然后根據(jù)等差數(shù)列的前n項和的公式表示出離地面的高度,讓高度等于210列出關(guān)于n的方程,求出方程的解即可得到n的值.
設(shè)每一秒鐘通過的路程依次為a1,a2,a3,…,an,
則數(shù)列{an}是首項a1=2,公差d=2的等差數(shù)列,
由求和公式有na1+=210,即2n+n(n﹣1)=210,
解得n=14,
故答案為:14
【點睛】
在解決等差、等比數(shù)列的運算問題時,有兩個處理思路,一是利用基本量,將多元問題簡化為一元問題,雖有一定量的運算,但思路簡潔,目標明確;二是利用等差、等比數(shù)列的性質(zhì)是兩種數(shù)列基本規(guī)律的深刻體現(xiàn),應(yīng)有意識地去應(yīng)用.但在應(yīng)用性質(zhì)時要注意性質(zhì)的前提條件,有時需要進行適當變形. 在解決等差、等比數(shù)列的運算問題時,經(jīng)常采用“巧用性質(zhì)、整體考慮、減少運算量”的方法.
【題型】填空題
【結(jié)束】
16
【題目】已知直線l:+=1,M是直線l上的一個動點,過點M作x軸和y軸的垂線,垂足分別為A,B,點P是線段AB的靠近點A的一個三等分點,點P的軌跡方程為______.
科目:高中數(shù)學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為a元,在下一年續(xù)保時,實行的是費率浮動機制,且保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如下表:
交強險浮動因素和費率浮動比率表 | ||
浮動因素 | 浮動比率 | |
A1 | 上一個年度未發(fā)生有責任道路交通事故 | 下浮10% |
A2 | 上兩個年度未發(fā)生有責任道路交通事故 | 下浮20% |
A3 | 上三個及以上年度未發(fā)生有責任道路交通事故 | 下浮30% |
A4 | 上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故 | 0% |
A5 | 上一個年度發(fā)生兩次及兩次以上有責任道路交通事故 | 上浮10% |
A6 | 上一個年度發(fā)生有責任道路交通死亡事故 | 上浮30% |
某機構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | A1 | A2 | A3 | A4 | A5 | A6 |
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
(1)求一輛普通6座以下私家車在第四年續(xù)保時保費高于基本保費的頻率;
(2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設(shè)購進一輛事故車虧損5 000元,一輛非事故車盈利10 000元.且各種投保類型的頻率與上述機構(gòu)調(diào)查的頻率一致,完成下列問題:
①若該銷售商店內(nèi)有6輛(車齡已滿三年)該品牌二手車,某顧客欲在店內(nèi)隨機挑選2輛車,求這2輛車恰好有一輛為事故車的概率;
②若該銷售商一次購進120輛(車齡已滿三年)該品牌二手車,求一輛車盈利的平均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{xn}滿足x1=0,xn+1=﹣x2n+xn+c(n∈N*).
(Ⅰ)證明:{xn}是遞減數(shù)列的充分必要條件是c<0;
(Ⅱ)求c的取值范圍,使{xn}是遞增數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為(α為參數(shù)),在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程為ρsin()=2 .
(Ⅰ)求曲線C和直線l在該直角坐標系下的普通方程;
(Ⅱ)動點A在曲線C上,動點B在直線l上,定點P的坐標為(﹣2,2),求|PB|+|AB|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】等比數(shù)列{an}是遞減數(shù)列,前n項的積為Tn,若T13=4T9,則a8a15=( )
A. 2 B. ±2 C. 4 D. ±4
【答案】A
【解析】
由題意可得 q>1,且 an >0,由條件可得 a1a2…a13=4a1a2…a9,化簡得a10a11a12a13=4,再由 a8a15=a10a13=a11a12,求得a8a15的值.
等比數(shù)列{an}是遞增數(shù)列,其前n項的積為Tn(n∈N*),若T13=4T9 ,設(shè)公比為q,
則由題意可得 q>1,且 an >0.
∴a1a2…a13=4a1a2…a9,∴a10a11a12a13=4.
又由等比數(shù)列的性質(zhì)可得 a8a15=a10a13=a11a12,∴a8a15=2.
故選:A.
【點睛】
本題主要考查等比數(shù)列的定義和性質(zhì),求得 a10a11a12a13=4是解題的關(guān)鍵.
【題型】單選題
【結(jié)束】
10
【題目】若直線y=2x上存在點(x,y)滿足約束條件,則實數(shù)m的最大值為
A. -1 B. 1 C. D. 2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)調(diào)查發(fā)現(xiàn),人們長期食用含高濃度甲基汞的魚類會引起汞中毒,其中羅非魚體內(nèi)汞含量比其它魚偏高.現(xiàn)從一批數(shù)量很大的羅非魚中隨機地抽出15條作樣本,經(jīng)檢測得各條魚的汞含量的莖葉圖(以小數(shù)點前的數(shù)字為莖,小數(shù)點后一位數(shù)字為葉)如圖.《中華人民共和國環(huán)境保護法》規(guī)定食品的汞含量不得超過1.0ppm.
(Ⅰ)檢查人員從這15條魚中,隨機抽出3條,求3條中恰有1條汞含量超標的概率;
(Ⅱ)若從這批數(shù)量很大的魚中任選3條魚,記ξ表示抽到的汞含量超標的魚的條數(shù).以此15條魚的樣本數(shù)據(jù)來估計這批數(shù)量很大的魚的總體數(shù)據(jù),求ξ的分布列及數(shù)學期望Eξ.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】菜農(nóng)定期使用低害殺蟲農(nóng)藥對蔬菜進行噴灑,以防止害蟲的危害,但采集上市時蔬菜仍存有少量的殘留農(nóng)藥,食用時需要用清水清洗干凈,下表是用清水x(單位:千克)清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥y(單位:微克)的數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
y(微克)
x(千克)
| ||||||
3 | 38 | 11 | 10 | 374 | -121 | -751 |
其中
(I)根據(jù)散點圖判斷,與,哪一個適宜作為蔬菜農(nóng)藥殘量與用水量的回歸方程類型(給出判斷即可,不必說明理由);
(Ⅱ)若用解析式
(Ⅲ)對于某種殘留在蔬菜上的農(nóng)藥,當它的殘留量低于20微克時對人體無害,為了放心食用該蔬菜,請估計需要用多少千克的清水清洗一千克蔬菜?(精確到0.1,參考數(shù)據(jù))
附:參考公式:回歸方程中斜率和截距的最小二乘估計公式分別為:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中,正確的是________(填序號).
①若,分別是平面α,β的一個法向量,則∥α∥β;
②若,分別是平面α,β的一個法向量,則α⊥β·=0;
③若是平面α的一個法向量,與平面α共面,則·=0;
④若兩個平面的法向量不垂直,則這兩個平面一定不垂直.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin2x+sinxcosx.
(Ⅰ)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(Ⅱ)當x∈[0,]時,求函數(shù)f(x)的值域.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com