17.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{2cos\frac{πx}{3},x≤2000}\\{{2^{x-2010}},x>2000}\end{array}}$,則f(f(2015))=( 。
A.$\sqrt{3}$B.$-\sqrt{3}$C.1D.-1

分析 直接利用分段函數(shù),逐步求解函數(shù)值即可.

解答 解:函數(shù)f(x)=$\left\{{\begin{array}{l}{2cos\frac{πx}{3},x≤2000}\\{{2^{x-2010}},x>2000}\end{array}}$,
則f(f(2015))=f(22015-2010)=f(32)=2cos$\frac{32π}{3}$=2cos$\frac{2π}{3}$=-1.
故選:D.

點(diǎn)評 本題考查分段函數(shù)的應(yīng)用,誘導(dǎo)公式化簡求值,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.籃球比賽時(shí),運(yùn)動員的進(jìn)攻成功率=投球命中率×不被對方運(yùn)動員的攔截率.某運(yùn)動員在距球籃10米(指到籃圈圓心在地面上射影的距離)以內(nèi)的投球命中率有如下變化:距球籃1米以內(nèi)(不含1米)為100%.距離球籃x米處,命中率下降至100%-10%[x].該運(yùn)動員投球被攔截率為$\frac{90%}{[x]+1}({[x]為實(shí)數(shù)x的整數(shù)部分,如[{3.4}]=3})$.試求該運(yùn)動員在比賽時(shí):(結(jié)果精確到1%)
(1)在三分線(約距球籃6.72米)處的進(jìn)攻成功率為多少?
(2)在距球籃幾米處的進(jìn)攻成功率最大,最大進(jìn)攻成功率為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.“m>-1”是“方程$\frac{{x}^{2}}{2+m}$-$\frac{{y}^{2}}{1+m}$=1表示雙曲線”的一個(gè)充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=x2-2x+8在[a,a+1]具有單調(diào)性,則實(shí)數(shù)a的取值范圍是(  )
A.0≤a≤1B.-1≤a≤0C.a≤0或a≥1D.a≤-1或a≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.若全集U={0,1,2,3}且∁UA={2},則集合A為( 。
A.A={0,1}B.A={0,1,3}C.A={0,1,2,3}D.A={1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.?dāng)?shù)列{an}中,a1=1,an+1+an=(-2)n,Sn是數(shù)列{an}的前n項(xiàng)和,則S6=(  )
A.-62B.62C.-42D.42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在直角梯形ABCD中,AD∥BC,AB⊥BC,AB=AD=1,BC=2,現(xiàn)將△ABD沿BD折起后使AC=$\sqrt{3}$,在四面體ABCD四個(gè)面中兩兩構(gòu)成直二面角的個(gè)數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線x+2y-3=0與圓x2+y2+x-2cy+c=0的兩個(gè)交點(diǎn)為A,B,O為坐標(biāo)原點(diǎn),且OA⊥OB,求實(shí)數(shù)c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)y=cos2x-4sinx的最小值為(  )
A.1B.-3C.-5D.不存在

查看答案和解析>>

同步練習(xí)冊答案